According to the B-spline theory and Boehm algorithm, this paper presents several necessary and sufficient G1 continuity conditions between two adjacent B-spline surfaces. In order to meet the need of application, a k...According to the B-spline theory and Boehm algorithm, this paper presents several necessary and sufficient G1 continuity conditions between two adjacent B-spline surfaces. In order to meet the need of application, a kind of sufficient conditions of G1 continuity are developed, and a kind of sufficient conditions of G1 continuity among N(N>2) patch B-spline surfaces meeting at a common corner are given at the end.展开更多
Global look-up table strategy proposed recently has been proven to be an efficient method to accelerate the interpolation, which is the most time-consuming part in the iterative sub-pixel digital image correlation (...Global look-up table strategy proposed recently has been proven to be an efficient method to accelerate the interpolation, which is the most time-consuming part in the iterative sub-pixel digital image correlation (DIC) algorithms. In this paper, a global look-up table strategy with cubic B-spline interpolation is developed for the DIC method based on the inverse compositional Gauss-Newton (IC-GN) algorithm. The performance of this strategy, including accuracy, precision, and computation efficiency, is evaluated through a theoretical and experimental study, using the one with widely employed bicubic interpolation as a benchmark. The global look-up table strategy with cubic B-spline interpolation improves significantly the accuracy of the IC-GN algorithm-based DIC method compared with the one using the bicubic interpolation, at a trivial price of computation efficiency.展开更多
In a reliability-based design optimization (RBDO), computation of the failure probability (Pf) at all design points through the process may suitably be avoided at the early stages. Thus, to reduce extensive computatio...In a reliability-based design optimization (RBDO), computation of the failure probability (Pf) at all design points through the process may suitably be avoided at the early stages. Thus, to reduce extensive computations of RBDO, one could decouple the optimization and reliability analysis. The present work proposes a new methodology for such a decoupled approach that separates optimization and reliability analysis into two procedures which significantly improve the computational efficiency of the RBDO. This technique is based on the probabilistic sensitivity approach (PSA) on the shifted probability density function. Stochastic variables are separated into two groups of desired and non-desired variables. The three-phase procedure may be summarized as: Phase 1, apply deterministic design optimization based on mean values of random variables;Phase 2, move designs toward a reliable space using PSA and finding a primary reliable optimum point;Phase 3, applying an intelligent self-adaptive procedure based on cubic B-spline interpolation functions until the targeted failure probability is reached. An improved response surface method is used for computation of failure probability. The proposed RBDO approach could significantly reduce the number of analyses required to less than 10% of conventional methods. The computational efficacy of this approach is demonstrated by solving four benchmark truss design problems published in the structural optimization literature.展开更多
文摘According to the B-spline theory and Boehm algorithm, this paper presents several necessary and sufficient G1 continuity conditions between two adjacent B-spline surfaces. In order to meet the need of application, a kind of sufficient conditions of G1 continuity are developed, and a kind of sufficient conditions of G1 continuity among N(N>2) patch B-spline surfaces meeting at a common corner are given at the end.
基金financially supported by the National Natural Science Foundation of China(11202081,11272124,and 11472109)the State Key Lab of Subtropical Building Science,South China University of Technology(2014ZC17)
文摘Global look-up table strategy proposed recently has been proven to be an efficient method to accelerate the interpolation, which is the most time-consuming part in the iterative sub-pixel digital image correlation (DIC) algorithms. In this paper, a global look-up table strategy with cubic B-spline interpolation is developed for the DIC method based on the inverse compositional Gauss-Newton (IC-GN) algorithm. The performance of this strategy, including accuracy, precision, and computation efficiency, is evaluated through a theoretical and experimental study, using the one with widely employed bicubic interpolation as a benchmark. The global look-up table strategy with cubic B-spline interpolation improves significantly the accuracy of the IC-GN algorithm-based DIC method compared with the one using the bicubic interpolation, at a trivial price of computation efficiency.
文摘In a reliability-based design optimization (RBDO), computation of the failure probability (Pf) at all design points through the process may suitably be avoided at the early stages. Thus, to reduce extensive computations of RBDO, one could decouple the optimization and reliability analysis. The present work proposes a new methodology for such a decoupled approach that separates optimization and reliability analysis into two procedures which significantly improve the computational efficiency of the RBDO. This technique is based on the probabilistic sensitivity approach (PSA) on the shifted probability density function. Stochastic variables are separated into two groups of desired and non-desired variables. The three-phase procedure may be summarized as: Phase 1, apply deterministic design optimization based on mean values of random variables;Phase 2, move designs toward a reliable space using PSA and finding a primary reliable optimum point;Phase 3, applying an intelligent self-adaptive procedure based on cubic B-spline interpolation functions until the targeted failure probability is reached. An improved response surface method is used for computation of failure probability. The proposed RBDO approach could significantly reduce the number of analyses required to less than 10% of conventional methods. The computational efficacy of this approach is demonstrated by solving four benchmark truss design problems published in the structural optimization literature.