Water-saving irrigation strategies can successfully alleviate methane emissions from rice fields,but significantly stimulate nitrous oxide(N_(2)O)emissions because of variations in soil oxygen level and redox potentia...Water-saving irrigation strategies can successfully alleviate methane emissions from rice fields,but significantly stimulate nitrous oxide(N_(2)O)emissions because of variations in soil oxygen level and redox potential.However,the relationship linking soil N_(2)O emissions to nitrogen functional genes during various fertilization treatments in water-saving paddy fields has rarely been investigated.Furthermore,the mitigation potential of organic fertilizer substitution on N_(2)O emissions and the microbial mechanism in rice fields must be further elucidated.Our study examined how soil N_(2)O emissions were affected by related functional microorganisms(ammonia-oxidizing archaea(AOA),ammonia-oxidizing bacteria(AOB),nirS,nirK and nosZ)to various fertilization treatments in a rice field in southeast China over two years.In this study,three fertilization regimes were applied to rice cultivation:a no nitrogen(N)(Control),an inorganic N(Ni),and an inorganic N with partial N substitution with organic manure(N_(i)+N_(o)).Over two rice-growing seasons,cumulative N_(2)O emissions averaged 0.47,4.62 and 4.08 kg ha^(−1)for the Control,Ni and N_(i)+N_(o)treatments,respectively.In comparison to the Ni treatment,the N_(i)+N_(o)fertilization regime considerably reduced soil N_(2)O emissions by 11.6%while maintaining rice yield,with a lower N_(2)O emission factor(EF)from fertilizer N of 0.95%.Nitrogen fertilization considerably raised the AOB,nirS,nirK and nosZ gene abundances,in comparison to the Control treatment.Moreover,the substitution of organic manure for inorganic N fertilizer significantly decreased AOB and nirS gene abundances and increased nosZ gene abundance.The AOB responded to N fertilization more sensitively than the AOA.Total N_(2)O emissions significantly correlated positively with AOB and nirS gene abundances while having a negative correlation with nosZ gene abundance and the nosZ/nirS ratio across N-fertilized plots.In summary,we conclude that organic manure substitution for inorganic N fertilizer decreased soil N_(2)O emissions primarily by changing the soil NO_(3)^(−)-N,pH and DOC levels,thus inhibiting the activities of ammonia oxidation in nitrification and nitrite reduction in denitrification,and strengthening N_(2)O reduction in denitrification from water-saving rice paddies.展开更多
Solid-state electrolyte Li_(10)GeP_(2)S_(12)(LGPS)has a high lithium ion conductivity of 12 mS cm^(-1)at room temperature,but its inferior chemical stability against lithium metal anode impedes its practical applicati...Solid-state electrolyte Li_(10)GeP_(2)S_(12)(LGPS)has a high lithium ion conductivity of 12 mS cm^(-1)at room temperature,but its inferior chemical stability against lithium metal anode impedes its practical application.Among all solutions,Ge atom substitution of the solid-state electrolyte LGPS stands out as the most promising solution to this interface problem.A systematic screening framework for Ge atom substitution including ionic conductivity,thermodynamic stability,electronic and mechanical properties is utilized to solve it.For fast screening,an enhanced model Dop Net FC using chemical formulas for the dataset is adopted to predict ionic conductivity.Finally,Li_(10)SrP_(2)S_(12)(LSrPS)is screened out,which has high lithium ion conductivity(12.58 mS cm^(-1)).In addition,an enhanced migration of lithium ion across the LSr PS/Li interface is found.Meanwhile,compared to the LGPS/Li interface,LSrPS/Li interface exhibits a larger Schottky barrier(0.134 eV),smaller electron transfer region(3.103?),and enhanced ability to block additional electrons,all of which contribute to the stabilized interface.The applied theoretical atom substitution screening framework with the aid of machine learning can be extended to rapid determination of modified specific material schemes.展开更多
It is a challenge to coordinate carrier-kinetics performance and the redox capacity of photogenerated charges synchronously at the atomic level for boosting photocatalytic activity.Herein,the atomic Ni was introduced ...It is a challenge to coordinate carrier-kinetics performance and the redox capacity of photogenerated charges synchronously at the atomic level for boosting photocatalytic activity.Herein,the atomic Ni was introduced into the lattice of hexagonal ZnIn_(2)S_(4) nanosheets(Ni/ZnIn_(2)S_(4))via directionalsubstituting Zn atom with the facile hydrothermal method.The electronic structure calculations indicate that the introduction of Ni atom effectively extracts more electrons and acts as active site for subsequent reduction reaction.Besides the optimized light absorption range,the elevation of Efand ECBendows Ni/ZnIn_(2)S_(4) photocatalyst with the increased electron concentration and the enhanced reduction ability for surface reaction.Moreover,ultrafast transient absorption spectroscopy,as well as a series of electrochemical tests,demonstrates that Ni/ZnIn_(2)S_(4) possesses 2.15 times longer lifetime of the excited charge carriers and an order of magnitude increase for carrier mobility and separation efficiency compared with pristine ZnIn_(2)S_(4).These efficient kinetics performances of charge carriers and enhanced redox capacity synergistically boost photocatalytic activity,in which a 3-times higher conversion efficiency of nitrobenzene reduction was achieved upon Ni/ZnIn_(2)S_(4).Our study not only provides in-depth insights into the effect of atomic directional-substitution on the kinetic behavior of photogenerated charges,but also opens an avenue to the synchronous optimization of redox capacity and carrier-kinetics performance for efficient solar energy conversion.展开更多
Recently,high temperature(T_(c)≈80 K)superconductivity(SC)has been discovered in La_(3)Ni_(2)O_(7)(LNO)under pressure.This raises the question of whether the superconducting transition temperature T_(c) could be furt...Recently,high temperature(T_(c)≈80 K)superconductivity(SC)has been discovered in La_(3)Ni_(2)O_(7)(LNO)under pressure.This raises the question of whether the superconducting transition temperature T_(c) could be further enhanced under suitable conditions.One possible route for achieving higher T_(c) is element substitution.Similar SC could appear in the Fmmm phase of rare-earth(RE)R_(3)Ni_(2)O_(7)(RNO,R=RE element)material series under suitable pressure.The electronic properties in the RNO materials are dominated by the Ni 3d orbitals in the bilayer NiO_(2) plane.In the strong coupling limit,the SC could be fully characterized by a bilayer single 3d_(x^(2)−y^(2))-orbital t–J‖–J⊥ model.With RE element substitution from La to other RE element,the lattice constant of the Fmmm RNO material decreases,and the resultant electronic hopping integral increases,leading to stronger superexchanges between the 3d_(x^(2)−y^(2)) orbitals.Based on the slave-boson mean-field theory,we explore the pairing nature and the evolution of T_(c) in RNO materials under pressure.Consequently,it is found that the element substitution does not alter the pairing nature,i.e.,the inter-layer s-wave pairing is always favored in the superconducting RNO under pressure.However,the T_(c) increases from La to Sm,and a nearly doubled T_(c) could be realized in SmNO under pressure.This work provides evidence for possible higher T_(c) R_(3)Ni_(2)O_(7) materials,which may be realized in further experiments.展开更多
Ion substitution has significantly improved the performance of ferrite magnets,and cobalt remains a key area of research.Studies on the mechanism of Co^(2+)in strontium ferrite,especially SrFe_(2n-x)Co_(x)O_(19-d)(n=6...Ion substitution has significantly improved the performance of ferrite magnets,and cobalt remains a key area of research.Studies on the mechanism of Co^(2+)in strontium ferrite,especially SrFe_(2n-x)Co_(x)O_(19-d)(n=6.1-5.4;x=0.05-0.20)synthesized using the ceramic method,showed that Co^(2+)preferentially enters the lattice as the Fe/Sr ratio decreases.This results in a decrease in the lattice constants a and c due to oxygen vacancies and iron ion deficiency.The impact of Co substitution on morphology is minor compared to the effect of the Fe/Sr ratio.As the Fe/Sr ratio decreases and the Co content increases,the saturation magnetization decreases.The magnetic anisotropy field exhibits a nonlinear change,generally increasing with higher Fe/Sr ratios and Co content.These changes in the performance of permanent magnets are attributed to the absence of Fe^(3+)ions at the 12k+2a and 2b sites and the substitution of Co^(2+)at the 2b site.This suggests that by adjusting the Fe/Sr ratio and appropriate Co substitution,the magnetic anisotropy field of M-type strontium ferrite can be effectively optimized.展开更多
The incorporation of partial A-site substitution in perovskite oxides represents a promising strategy for precisely controlling the electronic configuration and enhancing its intrinsic catalytic activity.Conventional ...The incorporation of partial A-site substitution in perovskite oxides represents a promising strategy for precisely controlling the electronic configuration and enhancing its intrinsic catalytic activity.Conventional methods for A-site substitution typically involve prolonged high-temperature processes.While these processes promote the development of unique nanostructures with highly exposed active sites,they often result in the uncontrolled configuration of introduced elements.Herein,we present a novel approach for synthesizing two-dimensional(2D)porous GdFeO_(3) perovskite with A-site strontium(Sr)substitution utilizing microwave shock method.This technique enables precise control of the Sr content and simultaneous construction of 2D porous structures in one step,capitalizing on the advantages of rapid heating and cooling(temperature~1100 K,rate~70 K s^(-1)).The active sites of this oxygen-rich defect structure can be clearly revealed through the simulation of the electronic configuration and the comprehensive analysis of the crystal structure.For electrocatalytic oxygen evolution reaction application,the synthesized 2D porous Gd_(0.8)Sr_(0.2)FeO_(3) electrocatalyst exhibits an exceptional overpotential of 294 mV at a current density of 10 mA cm^(-2)and a small Tafel slope of 55.85 mV dec^(-1)in alkaline electrolytes.This study offers a fresh perspective on designing crystal configurations and the construction of nanostructures in perovskite.展开更多
Polycrystalline particles of Ca3-xErxCo2O6 (x=0.0, 0.15, 0.3, 0.45 and 0.6) were synthesized using sol-gel method combined with Low Temperature Sintering procedure (LTS) to evaluate the effect of Er substitution o...Polycrystalline particles of Ca3-xErxCo2O6 (x=0.0, 0.15, 0.3, 0.45 and 0.6) were synthesized using sol-gel method combined with Low Temperature Sintering procedure (LTS) to evaluate the effect of Er substitution on the thermoelectric properties of Ca3Co2O6. The crystal structure and microstructure were investigated using X-ray diffraction, infrared spectroscopy and scanning electron microscope. The electrical conductivity and Seebeck coefficient of the complex oxides were measured from 300 to 1073 K. The results showed that all the sampies were p-type semiconductors. The electrical conductivity increased with the increase in temperature. Er substitutions at Ca site affected carrier concentrations and carder mobility, resulting an increase in Seebeck coefficient and decrease in electrical conductivity. The power factor of Ca2.85Er0.15Co2O6 reached 10.66 μw/mK^2 at 1073 K.展开更多
Feline panleukopenia virus(FPV)is a single-stranded DNA virus that can infect cats and cause feline panleukopenia,which is a highly contagious and fatal disease in felines.The sequence of FPV is highly variable,and mu...Feline panleukopenia virus(FPV)is a single-stranded DNA virus that can infect cats and cause feline panleukopenia,which is a highly contagious and fatal disease in felines.The sequence of FPV is highly variable,and mutations in the amino acids of its capsid protein play crucial roles in altering viral virulence,immunogenicity,host selection,and other abilities.In this study,the epidemiology of FPV was studied using 746 gastrointestinal swab samples derived from cats that presented gastrointestinal symptoms specifcally,diarrhea or vomiting during the period spanning from 2018 to 2022.The overall prevalence of FPV-positive patients among these samples was determined to be 45.4%.Capsid(virion)protein 2(VP2)gene of each FPV-positive sample was sequenced and amplifed,yielding 65 VP2 sequences.Among them,six VP2 gene sequences were detected in the majority of the samples test positive for FPV,and these positive samples originated from a diverse range of geographical locations.These isolates were named FPV-6,FPV-10,FPV-15,FPV-251,FPV-271 and FPV-S2.Additionally,the substitution of Ala300Pro(A300P)in VP2 was detected for the frst time in feline-derived FPV(FPV-251).FPV-251 isolate,with this substitution in VP2 protein,exhibited stable proliferative capacity in Madin-Darby canine kidney(MDCK)cells and A72 cells.FPV-271 was selected as the FPV control isolate due to its single amino acid diference from VP2 protein of FPV-251 at position 300(FPV-271 has alanine,while FPV-251 has proline).After oral infection,both FPV-251 and FPV-271 isolates caused feline panleukopenia,which is characterized by clinical signs of enterocolitis.However,FPV-251 can infect dogs through the oral route and cause gastrointestinal(GI)symptoms with lesions in the intestine and mesenteric lymph nodes(MLNs)of infected dogs.This is the frst report on the presence of an A300P substitution in VP2 protein of feline-derived FPV.Additionally,FPV isolate with a substitution of A300P at VP2 protein demonstrated efcient replication capabilities in canine cell lines and the ability to infect dogs.展开更多
The genetic constitution of fifteen materials derived from the cross wheat (Triticum aestivum L. cv. 'Chinese Spring') X barley (Hordeum vulgare L. cv. 'Betzes') was analyzed, and six disomic alien sub...The genetic constitution of fifteen materials derived from the cross wheat (Triticum aestivum L. cv. 'Chinese Spring') X barley (Hordeum vulgare L. cv. 'Betzes') was analyzed, and six disomic alien substitution lines were screened by GISH. The chromosome configurations in pollen mother cells at meiotic metaphase I (PMCs M I) of F, from each disomic substitution line respectively crossed with double ditelocentric lines 2A, 2B and 2D of 'Chinese Spring' were observed, and a set of wheat-barley disomic alien substitution lines 2H(A), 2H(B) and 2H(D) were obtained. The RFLP analysis with the probe psr131 on the short arm of wheat homeologous group 2 combining with four restriction enzymes were carried out. The results indicated that the probe psr131 could be used as molecular marker to tag the barley chromosome 2H. The barley chromosome 2H had good genetic compensation ability for wheat chromosomes 2B and 2D in vitality and other agronomic characters. The result of testing seed was that the wheat appearance starch quality had been changed from the half-farinaceous of 'Chinese Spring' to the half-cutin of substitution lines by transferring the barley chromosome 2H to wheat.展开更多
芝麻是八大类食物过敏原之一,快速准确识别芝麻过敏原对预防其过敏有重要意义。核酸适配体可以高效识别靶标过敏原,在过敏原检测中有良好的应用前景。为了获得芝麻主要过敏原Ses i 2的特异性核酸适体,本研究以Ses i 2为靶标,通过磁珠筛...芝麻是八大类食物过敏原之一,快速准确识别芝麻过敏原对预防其过敏有重要意义。核酸适配体可以高效识别靶标过敏原,在过敏原检测中有良好的应用前景。为了获得芝麻主要过敏原Ses i 2的特异性核酸适体,本研究以Ses i 2为靶标,通过磁珠筛选法(磁珠-SELEX)开展10轮筛选,经由高通量测序获得6条候补序列(S1~S6),并进行家族性、同源性分析及二级结构预测。结果表明,6条候选核酸适体的重复率可达46.38%,其自由能在-9.02到-2.47 kcal·moL^(-1)之间,根据自由能能量稳定原则,S1和S5吉布斯自由能最低最稳定,分别为-6.70和-9.02 kcal·moL^(-1)。利用ELISA试验进行亲和力测试,结果表明核酸适体S1和S2的亲和能力较强,S1:KD=67.02 nmol·L^(-1),R2=0.925 8,S2:KD=97.65 nmol·L^(-1),R2=0.795 1。核酸适体S1与过敏原Ses i 2的结合力和其他过敏原蛋白相比有显著差异,可视为具有特异性。本研究最终获得一条兼具良好亲和力和特异性的核酸适体S1,为芝麻过敏原快速检测提供了技术支撑。展开更多
The possibilities of magnetism induced by transition-metal atoms substitution in Bi2Te3 system are investigated by ab initio calculations. The calculated results indicate that a transition-metal atom substitution for ...The possibilities of magnetism induced by transition-metal atoms substitution in Bi2Te3 system are investigated by ab initio calculations. The calculated results indicate that a transition-metal atom substitution for a Bi atom produces magnetic moments, which are due to the spin-polarization of transition-metal 3d electrons. The values of magnetic moments are 0.92, 1.97, 2.97, 4.04, and 4.98 μB for 4% Ti-, V-, Cr-, Mn- and Fe-doped Bi2Te3 re- spectively. When substituting two transition-metal atoms, the characteristics of exchanging couple depend upon the distributions of the Bi atoms substituted. When two transition- metal atoms substituting for Bi atoms locate at the sites of Bil and Bi5, with the distance of 11.52A, the Bi1.84TM0.16Te3 system is energetically most stable and exhibits ferromagnetic coupling.展开更多
目的探讨三酰甘油葡萄糖乘积(triglyceride-glucose index,TyG)指数和血浆致动脉粥样硬化指数(atherogenic index of plasma,AIP)与老年冠心病(coronary heart disease,CHD)合并2型糖尿病(type 2 diabetes mellitus,T2DM)患者冠状动脉...目的探讨三酰甘油葡萄糖乘积(triglyceride-glucose index,TyG)指数和血浆致动脉粥样硬化指数(atherogenic index of plasma,AIP)与老年冠心病(coronary heart disease,CHD)合并2型糖尿病(type 2 diabetes mellitus,T2DM)患者冠状动脉正性重构的关系。方法按照住院先后顺序选取2022年1月至2023年6月河南科技大学第一附属医院心血管内科收治的老年CHD合并T2DM患者120例,根据重构指数分为正性重构组47例和非正性重构组73例。比较2组临床资料;采用多因素logistic回归分析冠状动脉正性重构的危险因素;采用Spearman相关性分析TyG和AIP与冠状动脉正性重构的相关性;采用ROC曲线分析TyG和AIP对冠状动脉正性重构的预测价值。结果正性重构组吸烟、三酰甘油、糖化血红蛋白、TyG、AIP显著高于非正性重构组,高密度脂蛋白胆固醇、血钙水平显著低于非正性重构组(P<0.05,P<0.01)。单因素logistic回归分析显示,吸烟、三酰甘油、高密度脂蛋白胆固醇、糖化血红蛋白、血钙、TyG、AIP是老年CHD合并T2DM患者冠状动脉正性重构的危险因素(P<0.05,P<0.01)。多因素logistic回归分析显示,TyG(OR=7.253,95%CI:2.458~13.364,P=0.035)、AIP(OR=6.017,95%CI:2.205~12.025,P=0.030)是老年CHD合并T2DM患者冠状动脉正性重构的独立危险因素(P<0.05)。TyG、AIP预测老年CHD合并T2DM患者冠状动脉正性重构的曲线下面积分别为0.783、0.766,联合预测老年CHD合并T2DM患者冠状动脉正性重构的曲线下面积为0.868,显著优于单独预测(P<0.05)。结论TyG和AIP与老年CHD合并T2DM患者冠状动脉正性重构密切相关,可作为预测冠状动脉正性重构的有效指标,对临床早期识别高危患者及制定个体化干预策略具有重要意义。展开更多
基金supported by the National Key Research and Development Program of China(2022YFD2300300)the National Natural Science Foundation of China(41907072)+1 种基金the Scientific Research Foundation of Zhejiang A&F University,China(2022LFR003)the Jiangsu Agriculture Science and Technology Innovation Fund,China(CX(21)3007).
文摘Water-saving irrigation strategies can successfully alleviate methane emissions from rice fields,but significantly stimulate nitrous oxide(N_(2)O)emissions because of variations in soil oxygen level and redox potential.However,the relationship linking soil N_(2)O emissions to nitrogen functional genes during various fertilization treatments in water-saving paddy fields has rarely been investigated.Furthermore,the mitigation potential of organic fertilizer substitution on N_(2)O emissions and the microbial mechanism in rice fields must be further elucidated.Our study examined how soil N_(2)O emissions were affected by related functional microorganisms(ammonia-oxidizing archaea(AOA),ammonia-oxidizing bacteria(AOB),nirS,nirK and nosZ)to various fertilization treatments in a rice field in southeast China over two years.In this study,three fertilization regimes were applied to rice cultivation:a no nitrogen(N)(Control),an inorganic N(Ni),and an inorganic N with partial N substitution with organic manure(N_(i)+N_(o)).Over two rice-growing seasons,cumulative N_(2)O emissions averaged 0.47,4.62 and 4.08 kg ha^(−1)for the Control,Ni and N_(i)+N_(o)treatments,respectively.In comparison to the Ni treatment,the N_(i)+N_(o)fertilization regime considerably reduced soil N_(2)O emissions by 11.6%while maintaining rice yield,with a lower N_(2)O emission factor(EF)from fertilizer N of 0.95%.Nitrogen fertilization considerably raised the AOB,nirS,nirK and nosZ gene abundances,in comparison to the Control treatment.Moreover,the substitution of organic manure for inorganic N fertilizer significantly decreased AOB and nirS gene abundances and increased nosZ gene abundance.The AOB responded to N fertilization more sensitively than the AOA.Total N_(2)O emissions significantly correlated positively with AOB and nirS gene abundances while having a negative correlation with nosZ gene abundance and the nosZ/nirS ratio across N-fertilized plots.In summary,we conclude that organic manure substitution for inorganic N fertilizer decreased soil N_(2)O emissions primarily by changing the soil NO_(3)^(−)-N,pH and DOC levels,thus inhibiting the activities of ammonia oxidation in nitrification and nitrite reduction in denitrification,and strengthening N_(2)O reduction in denitrification from water-saving rice paddies.
基金support from the National Natural Science Foundation of China (No.51806072)。
文摘Solid-state electrolyte Li_(10)GeP_(2)S_(12)(LGPS)has a high lithium ion conductivity of 12 mS cm^(-1)at room temperature,but its inferior chemical stability against lithium metal anode impedes its practical application.Among all solutions,Ge atom substitution of the solid-state electrolyte LGPS stands out as the most promising solution to this interface problem.A systematic screening framework for Ge atom substitution including ionic conductivity,thermodynamic stability,electronic and mechanical properties is utilized to solve it.For fast screening,an enhanced model Dop Net FC using chemical formulas for the dataset is adopted to predict ionic conductivity.Finally,Li_(10)SrP_(2)S_(12)(LSrPS)is screened out,which has high lithium ion conductivity(12.58 mS cm^(-1)).In addition,an enhanced migration of lithium ion across the LSr PS/Li interface is found.Meanwhile,compared to the LGPS/Li interface,LSrPS/Li interface exhibits a larger Schottky barrier(0.134 eV),smaller electron transfer region(3.103?),and enhanced ability to block additional electrons,all of which contribute to the stabilized interface.The applied theoretical atom substitution screening framework with the aid of machine learning can be extended to rapid determination of modified specific material schemes.
基金the National Natural Science Foundation of China (22209091)the Natural Science Foundation of Shandong Province (ZR2020QB057)+1 种基金the Key Program of National Natural Science Foundation of China (22133006)the Yankuang Group 2019 Science and Technology Program (YKKJ2019AJ05JG-R60)。
文摘It is a challenge to coordinate carrier-kinetics performance and the redox capacity of photogenerated charges synchronously at the atomic level for boosting photocatalytic activity.Herein,the atomic Ni was introduced into the lattice of hexagonal ZnIn_(2)S_(4) nanosheets(Ni/ZnIn_(2)S_(4))via directionalsubstituting Zn atom with the facile hydrothermal method.The electronic structure calculations indicate that the introduction of Ni atom effectively extracts more electrons and acts as active site for subsequent reduction reaction.Besides the optimized light absorption range,the elevation of Efand ECBendows Ni/ZnIn_(2)S_(4) photocatalyst with the increased electron concentration and the enhanced reduction ability for surface reaction.Moreover,ultrafast transient absorption spectroscopy,as well as a series of electrochemical tests,demonstrates that Ni/ZnIn_(2)S_(4) possesses 2.15 times longer lifetime of the excited charge carriers and an order of magnitude increase for carrier mobility and separation efficiency compared with pristine ZnIn_(2)S_(4).These efficient kinetics performances of charge carriers and enhanced redox capacity synergistically boost photocatalytic activity,in which a 3-times higher conversion efficiency of nitrobenzene reduction was achieved upon Ni/ZnIn_(2)S_(4).Our study not only provides in-depth insights into the effect of atomic directional-substitution on the kinetic behavior of photogenerated charges,but also opens an avenue to the synchronous optimization of redox capacity and carrier-kinetics performance for efficient solar energy conversion.
基金supported by the National Natural Science Foundation of China(Grant Nos.12234016,12174317,and 12074031)the New Cornerstone Science Foundation.
文摘Recently,high temperature(T_(c)≈80 K)superconductivity(SC)has been discovered in La_(3)Ni_(2)O_(7)(LNO)under pressure.This raises the question of whether the superconducting transition temperature T_(c) could be further enhanced under suitable conditions.One possible route for achieving higher T_(c) is element substitution.Similar SC could appear in the Fmmm phase of rare-earth(RE)R_(3)Ni_(2)O_(7)(RNO,R=RE element)material series under suitable pressure.The electronic properties in the RNO materials are dominated by the Ni 3d orbitals in the bilayer NiO_(2) plane.In the strong coupling limit,the SC could be fully characterized by a bilayer single 3d_(x^(2)−y^(2))-orbital t–J‖–J⊥ model.With RE element substitution from La to other RE element,the lattice constant of the Fmmm RNO material decreases,and the resultant electronic hopping integral increases,leading to stronger superexchanges between the 3d_(x^(2)−y^(2)) orbitals.Based on the slave-boson mean-field theory,we explore the pairing nature and the evolution of T_(c) in RNO materials under pressure.Consequently,it is found that the element substitution does not alter the pairing nature,i.e.,the inter-layer s-wave pairing is always favored in the superconducting RNO under pressure.However,the T_(c) increases from La to Sm,and a nearly doubled T_(c) could be realized in SmNO under pressure.This work provides evidence for possible higher T_(c) R_(3)Ni_(2)O_(7) materials,which may be realized in further experiments.
基金support from the Research Projects of Ganjiang Innovation Academy,Chinese Academy of Sciences(Grant No.E355B001)Key Research Program of the Chinese Academy of Sciences(Grant No.ZDRW-CN-2021-3)Science Center of the National Natural Science Foundation of China(Grant No.52088101).
文摘Ion substitution has significantly improved the performance of ferrite magnets,and cobalt remains a key area of research.Studies on the mechanism of Co^(2+)in strontium ferrite,especially SrFe_(2n-x)Co_(x)O_(19-d)(n=6.1-5.4;x=0.05-0.20)synthesized using the ceramic method,showed that Co^(2+)preferentially enters the lattice as the Fe/Sr ratio decreases.This results in a decrease in the lattice constants a and c due to oxygen vacancies and iron ion deficiency.The impact of Co substitution on morphology is minor compared to the effect of the Fe/Sr ratio.As the Fe/Sr ratio decreases and the Co content increases,the saturation magnetization decreases.The magnetic anisotropy field exhibits a nonlinear change,generally increasing with higher Fe/Sr ratios and Co content.These changes in the performance of permanent magnets are attributed to the absence of Fe^(3+)ions at the 12k+2a and 2b sites and the substitution of Co^(2+)at the 2b site.This suggests that by adjusting the Fe/Sr ratio and appropriate Co substitution,the magnetic anisotropy field of M-type strontium ferrite can be effectively optimized.
基金financial support from the National Natural Science Foundation of China (52203070)the Open Fund of State Key Laboratory of New Textile Materials and Advanced Processing Technologies (FZ2022005)+2 种基金the Open Fund of Hubei Key Laboratory of Biomass Fiber and Ecological Dyeing and Finishing (STRZ202203)the financial support provided by the China Scholarship Council (CSC)Visiting Scholar Programfinancial support from Institute for Sustainability,Energy and Resources,The University of Adelaide,Future Making Fellowship,Australia。
文摘The incorporation of partial A-site substitution in perovskite oxides represents a promising strategy for precisely controlling the electronic configuration and enhancing its intrinsic catalytic activity.Conventional methods for A-site substitution typically involve prolonged high-temperature processes.While these processes promote the development of unique nanostructures with highly exposed active sites,they often result in the uncontrolled configuration of introduced elements.Herein,we present a novel approach for synthesizing two-dimensional(2D)porous GdFeO_(3) perovskite with A-site strontium(Sr)substitution utilizing microwave shock method.This technique enables precise control of the Sr content and simultaneous construction of 2D porous structures in one step,capitalizing on the advantages of rapid heating and cooling(temperature~1100 K,rate~70 K s^(-1)).The active sites of this oxygen-rich defect structure can be clearly revealed through the simulation of the electronic configuration and the comprehensive analysis of the crystal structure.For electrocatalytic oxygen evolution reaction application,the synthesized 2D porous Gd_(0.8)Sr_(0.2)FeO_(3) electrocatalyst exhibits an exceptional overpotential of 294 mV at a current density of 10 mA cm^(-2)and a small Tafel slope of 55.85 mV dec^(-1)in alkaline electrolytes.This study offers a fresh perspective on designing crystal configurations and the construction of nanostructures in perovskite.
基金the National Natural Science Foundation of China (20571019)Scientific Research Foundation for the Returned Overseas Chinese Scholars, Heilongjiang (LC06C130)Program of Harbin Subject Chief Scientist
文摘Polycrystalline particles of Ca3-xErxCo2O6 (x=0.0, 0.15, 0.3, 0.45 and 0.6) were synthesized using sol-gel method combined with Low Temperature Sintering procedure (LTS) to evaluate the effect of Er substitution on the thermoelectric properties of Ca3Co2O6. The crystal structure and microstructure were investigated using X-ray diffraction, infrared spectroscopy and scanning electron microscope. The electrical conductivity and Seebeck coefficient of the complex oxides were measured from 300 to 1073 K. The results showed that all the sampies were p-type semiconductors. The electrical conductivity increased with the increase in temperature. Er substitutions at Ca site affected carrier concentrations and carder mobility, resulting an increase in Seebeck coefficient and decrease in electrical conductivity. The power factor of Ca2.85Er0.15Co2O6 reached 10.66 μw/mK^2 at 1073 K.
基金the Experimental Animal Research Project of Hubei Province(Grant No.2023CFA005).
文摘Feline panleukopenia virus(FPV)is a single-stranded DNA virus that can infect cats and cause feline panleukopenia,which is a highly contagious and fatal disease in felines.The sequence of FPV is highly variable,and mutations in the amino acids of its capsid protein play crucial roles in altering viral virulence,immunogenicity,host selection,and other abilities.In this study,the epidemiology of FPV was studied using 746 gastrointestinal swab samples derived from cats that presented gastrointestinal symptoms specifcally,diarrhea or vomiting during the period spanning from 2018 to 2022.The overall prevalence of FPV-positive patients among these samples was determined to be 45.4%.Capsid(virion)protein 2(VP2)gene of each FPV-positive sample was sequenced and amplifed,yielding 65 VP2 sequences.Among them,six VP2 gene sequences were detected in the majority of the samples test positive for FPV,and these positive samples originated from a diverse range of geographical locations.These isolates were named FPV-6,FPV-10,FPV-15,FPV-251,FPV-271 and FPV-S2.Additionally,the substitution of Ala300Pro(A300P)in VP2 was detected for the frst time in feline-derived FPV(FPV-251).FPV-251 isolate,with this substitution in VP2 protein,exhibited stable proliferative capacity in Madin-Darby canine kidney(MDCK)cells and A72 cells.FPV-271 was selected as the FPV control isolate due to its single amino acid diference from VP2 protein of FPV-251 at position 300(FPV-271 has alanine,while FPV-251 has proline).After oral infection,both FPV-251 and FPV-271 isolates caused feline panleukopenia,which is characterized by clinical signs of enterocolitis.However,FPV-251 can infect dogs through the oral route and cause gastrointestinal(GI)symptoms with lesions in the intestine and mesenteric lymph nodes(MLNs)of infected dogs.This is the frst report on the presence of an A300P substitution in VP2 protein of feline-derived FPV.Additionally,FPV isolate with a substitution of A300P at VP2 protein demonstrated efcient replication capabilities in canine cell lines and the ability to infect dogs.
文摘The genetic constitution of fifteen materials derived from the cross wheat (Triticum aestivum L. cv. 'Chinese Spring') X barley (Hordeum vulgare L. cv. 'Betzes') was analyzed, and six disomic alien substitution lines were screened by GISH. The chromosome configurations in pollen mother cells at meiotic metaphase I (PMCs M I) of F, from each disomic substitution line respectively crossed with double ditelocentric lines 2A, 2B and 2D of 'Chinese Spring' were observed, and a set of wheat-barley disomic alien substitution lines 2H(A), 2H(B) and 2H(D) were obtained. The RFLP analysis with the probe psr131 on the short arm of wheat homeologous group 2 combining with four restriction enzymes were carried out. The results indicated that the probe psr131 could be used as molecular marker to tag the barley chromosome 2H. The barley chromosome 2H had good genetic compensation ability for wheat chromosomes 2B and 2D in vitality and other agronomic characters. The result of testing seed was that the wheat appearance starch quality had been changed from the half-farinaceous of 'Chinese Spring' to the half-cutin of substitution lines by transferring the barley chromosome 2H to wheat.
文摘芝麻是八大类食物过敏原之一,快速准确识别芝麻过敏原对预防其过敏有重要意义。核酸适配体可以高效识别靶标过敏原,在过敏原检测中有良好的应用前景。为了获得芝麻主要过敏原Ses i 2的特异性核酸适体,本研究以Ses i 2为靶标,通过磁珠筛选法(磁珠-SELEX)开展10轮筛选,经由高通量测序获得6条候补序列(S1~S6),并进行家族性、同源性分析及二级结构预测。结果表明,6条候选核酸适体的重复率可达46.38%,其自由能在-9.02到-2.47 kcal·moL^(-1)之间,根据自由能能量稳定原则,S1和S5吉布斯自由能最低最稳定,分别为-6.70和-9.02 kcal·moL^(-1)。利用ELISA试验进行亲和力测试,结果表明核酸适体S1和S2的亲和能力较强,S1:KD=67.02 nmol·L^(-1),R2=0.925 8,S2:KD=97.65 nmol·L^(-1),R2=0.795 1。核酸适体S1与过敏原Ses i 2的结合力和其他过敏原蛋白相比有显著差异,可视为具有特异性。本研究最终获得一条兼具良好亲和力和特异性的核酸适体S1,为芝麻过敏原快速检测提供了技术支撑。
文摘The possibilities of magnetism induced by transition-metal atoms substitution in Bi2Te3 system are investigated by ab initio calculations. The calculated results indicate that a transition-metal atom substitution for a Bi atom produces magnetic moments, which are due to the spin-polarization of transition-metal 3d electrons. The values of magnetic moments are 0.92, 1.97, 2.97, 4.04, and 4.98 μB for 4% Ti-, V-, Cr-, Mn- and Fe-doped Bi2Te3 re- spectively. When substituting two transition-metal atoms, the characteristics of exchanging couple depend upon the distributions of the Bi atoms substituted. When two transition- metal atoms substituting for Bi atoms locate at the sites of Bil and Bi5, with the distance of 11.52A, the Bi1.84TM0.16Te3 system is energetically most stable and exhibits ferromagnetic coupling.
文摘目的探讨三酰甘油葡萄糖乘积(triglyceride-glucose index,TyG)指数和血浆致动脉粥样硬化指数(atherogenic index of plasma,AIP)与老年冠心病(coronary heart disease,CHD)合并2型糖尿病(type 2 diabetes mellitus,T2DM)患者冠状动脉正性重构的关系。方法按照住院先后顺序选取2022年1月至2023年6月河南科技大学第一附属医院心血管内科收治的老年CHD合并T2DM患者120例,根据重构指数分为正性重构组47例和非正性重构组73例。比较2组临床资料;采用多因素logistic回归分析冠状动脉正性重构的危险因素;采用Spearman相关性分析TyG和AIP与冠状动脉正性重构的相关性;采用ROC曲线分析TyG和AIP对冠状动脉正性重构的预测价值。结果正性重构组吸烟、三酰甘油、糖化血红蛋白、TyG、AIP显著高于非正性重构组,高密度脂蛋白胆固醇、血钙水平显著低于非正性重构组(P<0.05,P<0.01)。单因素logistic回归分析显示,吸烟、三酰甘油、高密度脂蛋白胆固醇、糖化血红蛋白、血钙、TyG、AIP是老年CHD合并T2DM患者冠状动脉正性重构的危险因素(P<0.05,P<0.01)。多因素logistic回归分析显示,TyG(OR=7.253,95%CI:2.458~13.364,P=0.035)、AIP(OR=6.017,95%CI:2.205~12.025,P=0.030)是老年CHD合并T2DM患者冠状动脉正性重构的独立危险因素(P<0.05)。TyG、AIP预测老年CHD合并T2DM患者冠状动脉正性重构的曲线下面积分别为0.783、0.766,联合预测老年CHD合并T2DM患者冠状动脉正性重构的曲线下面积为0.868,显著优于单独预测(P<0.05)。结论TyG和AIP与老年CHD合并T2DM患者冠状动脉正性重构密切相关,可作为预测冠状动脉正性重构的有效指标,对临床早期识别高危患者及制定个体化干预策略具有重要意义。