期刊文献+
共找到556篇文章
< 1 2 28 >
每页显示 20 50 100
Defects evolution in n-type 4H-SiC induced by electron irradiation and annealing
1
作者 Huifan Xiong Xuesong Lu +5 位作者 Xu Gao Yuchao Yan Shuai Liu Lihui Song Deren Yang Xiaodong Pi 《Journal of Semiconductors》 EI CAS CSCD 2024年第7期77-83,共7页
Radiation damage produced in 4H-SiC by electrons of different doses is presented by using multiple characterization techniques. Raman spectra results indicate that SiC crystal structures are essentially impervious to ... Radiation damage produced in 4H-SiC by electrons of different doses is presented by using multiple characterization techniques. Raman spectra results indicate that SiC crystal structures are essentially impervious to 10 Me V electron irradiation with doses up to 3000 kGy. However, irradiation indeed leads to the generation of various defects, which are evaluated through photoluminescence(PL) and deep level transient spectroscopy(DLTS). The PL spectra feature a prominent broad band centered at 500 nm, accompanied by several smaller peaks ranging from 660 to 808 nm. The intensity of each PL peak demonstrates a linear correlation with the irradiation dose, indicating a proportional increase in defect concentration during irradiation. The DLTS spectra reveal several thermally unstable and stable defects that exhibit similarities at low irradiation doses.Notably, after irradiating at the higher dose of 1000 kGy, a new stable defect labeled as R_(2)(Ec-0.51 eV) appeared after annealing at 800 K. Furthermore, the impact of irradiation-induced defects on SiC junction barrier Schottky diodes is discussed. It is observed that high-dose electron irradiation converts SiC n-epilayers to semi-insulating layers. However, subjecting the samples to a temperature of only 800 K results in a significant reduction in resistance due to the annealing out of unstable defects. 展开更多
关键词 4H-SIC deep level transient spectroscopy(DLTS) photoluminescence(PL) defects
在线阅读 下载PDF
Ce-MOFS/g-C_(3)N_(4)复合材料的制备及其光催化二氧化碳还原制一氧化碳研究
2
作者 张辉 孙懿辉 +3 位作者 吕妍 安胜利 郭瑞华 王瑞芬 《功能材料》 北大核心 2025年第1期1171-1178,共8页
以硝酸铈和尿素为原料,1,3,5苯三甲酸为配体,采用简单的静电自组装法合成了铈金属有机框架(Ce-BTC)和石墨相氮化碳(g-C_(3)N_(4))的复合材料(Ce-BTC/g-C_(3)N_(4)),用于二氧化碳还原制一氧化碳的研究,并探索Ce-BTC的复合对g-C_(3)N_(4)... 以硝酸铈和尿素为原料,1,3,5苯三甲酸为配体,采用简单的静电自组装法合成了铈金属有机框架(Ce-BTC)和石墨相氮化碳(g-C_(3)N_(4))的复合材料(Ce-BTC/g-C_(3)N_(4)),用于二氧化碳还原制一氧化碳的研究,并探索Ce-BTC的复合对g-C_(3)N_(4)性能的影响机制。利用X射线衍射、红外光谱、扫描电子显微镜、紫外-可见光吸收光谱、荧光光谱、阻抗、光电流测试和CO_(2)还原性能测试对复合材料的结构、形貌、光电学性能及催化性能进行研究。结果表明Ce-BTC与g-C_(3)N_(4)的复合可能使得g-C_(3)N_(4)层间距发生改变,在细化晶体颗粒的同时提高样品比表面积,使复合样品获得更高的可见光捕获能力且载流子的分离效率更高;在仅加入1 mL H2O作为质子提供源的前提下,Ce-BTC/g-C_(3)N_(4)-3拥有最优光催化性能。CO产率为19.02μmol/(h·g),是g-C_(3)N_(4)的2.25倍,循环测试后催化性能基本保持稳定。 展开更多
关键词 二氧化碳还原 ce-BTC 石墨相氮化碳 复合光催化材料
在线阅读 下载PDF
Decade Milestone Advancement of Defect-Engineered g-C_(3)N_(4) for Solar Catalytic Applications 被引量:3
3
作者 Shaoqi Hou Xiaochun Gao +8 位作者 Xingyue Lv Yilin Zhao Xitao Yin Ying Liu Juan Fang Xingxing Yu Xiaoguang Ma Tianyi Ma Dawei Su 《Nano-Micro Letters》 SCIE EI CAS CSCD 2024年第4期153-218,共66页
Over the past decade, graphitic carbon nitride(g-C_(3)N_(4)) has emerged as a universal photocatalyst toward various sustainable carbo-neutral technologies. Despite solar applications discrepancy, g-C_(3)N_(4) is stil... Over the past decade, graphitic carbon nitride(g-C_(3)N_(4)) has emerged as a universal photocatalyst toward various sustainable carbo-neutral technologies. Despite solar applications discrepancy, g-C_(3)N_(4) is still confronted with a general fatal issue of insufficient supply of thermodynamically active photocarriers due to its inferior solar harvesting ability and sluggish charge transfer dynamics. Fortunately, this could be significantly alleviated by the “all-in-one” defect engineering strategy, which enables a simultaneous amelioration of both textural uniqueness and intrinsic electronic band structures. To this end, we have summarized an unprecedently comprehensive discussion on defect controls including the vacancy/non-metallic dopant creation with optimized electronic band structure and electronic density, metallic doping with ultraactive coordinated environment(M–N_(x), M–C_(2)N_(2), M–O bonding), functional group grafting with optimized band structure, and promoted crystallinity with extended conjugation π system with weakened interlayered van der Waals interaction. Among them, the defect states induced by various defect types such as N vacancy, P/S/halogen dopants, and cyano group in boosting solar harvesting and accelerating photocarrier transfer have also been emphasized. More importantly, the shallow defect traps identified by femtosecond transient absorption spectra(fs-TAS) have also been highlighted. It is believed that this review would pave the way for future readers with a unique insight into a more precise defective g-C_(3)N_(4) “customization”, motivating more profound thinking and flourishing research outputs on g-C_(3)N_(4)-based photocatalysis. 展开更多
关键词 defect engineering g-C_(3)N_(4) Electronic band structures Photocarrier transfer kinetics defect states
在线阅读 下载PDF
CoMn_(2)O_(4)/Ce-TiO_(2)双功能催化剂SCR脱硝协同CO氧化性能研究
4
作者 唐晓龙 温佳俊 +6 位作者 刘媛媛 王成志 罗宁 段二红 周远松 易红宏 高凤雨 《材料导报》 北大核心 2025年第5期115-121,共7页
实现工业烟气的超低排放及多污染物协同控制是当前大气污染治理的重要任务。本工作以负载型Mn基尖晶石催化剂为研究对象,通过Co、Ce金属改性的方式研发了一种低温选择性催化还原(Selective catalytic reduction,SCR)脱硝兼顾CO氧化的CoM... 实现工业烟气的超低排放及多污染物协同控制是当前大气污染治理的重要任务。本工作以负载型Mn基尖晶石催化剂为研究对象,通过Co、Ce金属改性的方式研发了一种低温选择性催化还原(Selective catalytic reduction,SCR)脱硝兼顾CO氧化的CoMn_(2)O_(4)/Ce-TiO_(2)双功能催化剂。研究了不同烟气组分对同时脱硝脱CO效率的影响:SO_(2)对脱硝效率、脱CO效率均表现出抑制作用,而H_(2)O降低了NO_(x)转化率却可以提高CO转化率;CO与NH_(3)在较低浓度下起到双还原剂的作用,共同提升NO_(x)转化率,而在较高浓度时,二者由于竞争吸附导致CO转化率下降。分析认为,Mn是主要的SCR反应活性位点,Co是主要的脱CO活性位点,而Ce物种对SCR反应和脱CO反应都具有一定的作用。在同时脱硝脱CO反应中,NO_(x)主要通过NH_(3)-SCR反应脱除,CO主要通过氧化反应脱除。 展开更多
关键词 氨选择性催化还原(NH_(3)-SCR) 一氧化碳氧化 CoMn_(2)O_(4)/ce-TiO_(2)催化剂 二氧化硫 反应机理
在线阅读 下载PDF
Simulation on dynamic characteristics of TC4 cutting with crack defects
5
作者 SHI Lichen WANG Jian +1 位作者 DOU Weitao YUAN Jiageng 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2024年第3期387-396,共10页
Titanium alloys play an important role in aerospace and other fields.However,after precision forging and cold rolling process,some defects will appear on the subsurface of titanium alloy bars,thus reducing the surface... Titanium alloys play an important role in aerospace and other fields.However,after precision forging and cold rolling process,some defects will appear on the subsurface of titanium alloy bars,thus reducing the surface quality and precision of turning process.This study aimed at exploring the effect of crack defects on TC4 cutting.Firstly,the finite element cutting simulation model of TC4 material with crack defects was established in ABAQUS.Then,the cutting parameters such as cutting force,stress concentration,chip morphology,residual stress were obtained by changing the variables such as the size and height of crack defects.Finally,the turning experiment was carried out on centerless lathe.The results show that the cutting force changes abruptly when the defect position is located on the cutting path,the maximal stress occurs at the tip of the defect,and the mutation of stress value is more serious with the increase of defect size;the buckling deformation of chip morphology occurs and becomes less serious with the increase of the distance between the defect position and the workpiece surface;the surface residual stress near the defect is related to the stress when the tool is close to the defect,the larger defect size and the closer to the machined surface,the greater the residual stress.Therefore,under certain processing conditions,the TC4 material should avoid large size defects or increase the distance between defects and the machined surface,so as to obtain better and stable surface quality. 展开更多
关键词 crack defect TC4 ABAQUS centerless lathe
在线阅读 下载PDF
Interface defect induced upgrade of K-storage properties in KFeSO4Fcathode: From lowered Fe-3d orbital energy level to advancedpotassium-ion batteries
6
作者 Yan Liu Zhen-Yi Gu +7 位作者 Yong-Li Heng Jin-Zhi Guo Miao Du Hao-Jie Liang Jia-Lin Yang Kai-Yang Zhang Kai Li Xing-Long Wu 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第11期1724-1733,共10页
KFeSO_(4)F(KFSF)is considered a potential cathode due to the large capacity and low cost.However,the inferior electronic conductivity leads to poor electrochemical performance.Defect engineering can facilitate the ele... KFeSO_(4)F(KFSF)is considered a potential cathode due to the large capacity and low cost.However,the inferior electronic conductivity leads to poor electrochemical performance.Defect engineering can facilitate the electron/ion transfer by tuning electronic structure,thus providing favorable electrochemical performance.Herein,through the regulation of surface defect engineering in reduced graphene oxide(rGO),the Fe–C bonds were formed between KFSF and rGO.The Fe–C bonds formed work in regulating the Fe-3d orbital as well as promoting the migration ability of K ions and increasing the electronic conductivity of KFSF.Thus,the KFSF@rGO delivers a high capacity of 119.6 mAh g^(-1).When matched with a graphite@pitch-derived S-doped carbon anode,the full cell delivers an energy density of 250.5 Wh kg^(-1) and a capacity retention of 81.5%after 400 cycles.This work offers a simple and valid method to develop high-performance cathodes by tuning defect sites. 展开更多
关键词 Potassium-ion batteries CATHODE defect chemistry KFeSO4F Fe–C bond
在线阅读 下载PDF
In-doping collaboratively controlling back interface and bulk defects to achieve efficient flexible CZTSSe solar cells
7
作者 Quanzhen Sun Yifan Li +6 位作者 Caixia Zhang Shunli Du Weihao Xie Jionghua Wu Qiao Zheng Hui Deng Shuying Cheng 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第2期10-17,I0002,共9页
Focusing on the low open circuit voltage(V_(OC))and fill factor(FF)in flexible Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)solar cells,indium(In)ions are introduced into the CZTSSe absorbers near Mo foils to modify the back interface... Focusing on the low open circuit voltage(V_(OC))and fill factor(FF)in flexible Cu_(2)ZnSn(S,Se)_(4)(CZTSSe)solar cells,indium(In)ions are introduced into the CZTSSe absorbers near Mo foils to modify the back interface and passivate deep level defects in CZTSSe bulk concurrently for improving the performance of flexible device.The results show that In doping effectively inhibits the formation of secondary phase(Cu(S,Se)_(2))and VSndefects.Further studies demonstrate that the barrier height at the back interface is decreased and the deep level defects(Cu_(Sn)defects)in CZTSSe bulk are passivated.Moreover,the carrier concentration is increased and the V_(OC) deficit(V_(OC,def))is decreased significantly due to In doping.Finally,the flexible CZTSSe solar cell with 10.01%power conversion efficiency(PCE)has been obtained.The synergistic strategy of interface modification and bulk defects passivation through In incorporation provides a new thought for the fabrication of efficient flexible kesterite-based solar cells. 展开更多
关键词 Flexible solar cells Cu_(2)ZnSn(S Se)_(4) Back interface Deep level defects Barrier height
在线阅读 下载PDF
Passivation of carbon dimer defects in amorphous SiO_2/4H–SiC(0001) interface:A first-principles study 被引量:3
8
作者 Yi-Jie Zhang Zhi-Peng Yin +1 位作者 Yan Su De-Jun Wang 《Chinese Physics B》 SCIE EI CAS CSCD 2018年第4期376-383,共8页
An amorphous SiO2/4 H–Si C(0001) interface model with carbon dimer defects is established based on density functional theory of the first-principle plane wave pseudopotential method.The structures of carbon dimer d... An amorphous SiO2/4 H–Si C(0001) interface model with carbon dimer defects is established based on density functional theory of the first-principle plane wave pseudopotential method.The structures of carbon dimer defects after passivation by H2 and NO molecules are established,and the interface states before and after passivation are calculated by the Heyd–Scuseria–Ernzerhof(HSE06) hybrid functional scheme.Calculation results indicate that H2 can be adsorbed on the O2–C = C–O2 defect and the carbon–carbon double bond is converted into a single bond.However,H2 cannot be adsorbed on the O2–(C = C)′ –O2 defect.The NO molecules can be bonded by N and C atoms to transform the carbon–carbon double bonds,thereby passivating the two defects.This study shows that the mechanism for the passivation of Si O2/4 H–SiC(0001) interface carbon dimer defects is to convert the carbon–carbon double bonds into carbon dimers.Moreover,some intermediate structures that can be introduced into the interface state in the band gap should be avoided. 展开更多
关键词 4H-SIC interface defect density of states firstprinciple
在线阅读 下载PDF
Surface defects in 4H-SiC homoepitaxial layers 被引量:3
9
作者 Lixia Zhao 《Nanotechnology and Precision Engineering》 CAS CSCD 2020年第4期229-234,共6页
Although a high-quality homoepitaxial layer of 4H‑silicon carbide(4H-SiC)can be obtained on a 4°off-axis substrate using chemical vapor deposition,the reduction of defects is still a focus of research.In this stu... Although a high-quality homoepitaxial layer of 4H‑silicon carbide(4H-SiC)can be obtained on a 4°off-axis substrate using chemical vapor deposition,the reduction of defects is still a focus of research.In this study,several kinds of surface defects in the 4H-SiC homoepitaxial layer are systemically investigated,including triangles,carrots,surface pits,basal plane dislocations,and step bunching.Themorphologies and structures of surface defects are further discussed via optical microscopy and potassium hydroxide-based defect selective etching analysis.Through research and analysis,we found that the origin of surface defects in the 4H-SiC homoepitaxial layer can be attributed to two aspects:the propagation of substrate defects,such as scratches,dislocation,and inclusion,and improper process parameters during epitaxial growth,such as in-situ etch,C/Si ratio,and growth temperature.It is believed that the surface defects in the 4H-SiC homoepitaxial layer can be significantly decreased by precisely controlling the chemistry on the deposition surface during the growth process. 展开更多
关键词 4H silicon carbide Surface defect Chemical vapor deposition REDUCTION
在线阅读 下载PDF
Impact of Native Defects in the High Dielectric Constant Oxide HfSiO_4 on MOS Device Performance 被引量:2
10
作者 董海宽 史力斌 《Chinese Physics Letters》 SCIE CAS CSCD 2016年第1期92-95,共4页
Native dejects in HfSiO4 are investigated by first principles calculations. Transition levels of native detects can be accurately described by employing the nonlocal HSE06 hybrid functional. This methodology overcomes... Native dejects in HfSiO4 are investigated by first principles calculations. Transition levels of native detects can be accurately described by employing the nonlocal HSE06 hybrid functional. This methodology overcomes the band gap problem in traditional functionals. By band alignments among the Si, GaAs and HfSiO4. we are able to determine the position of defect levels in Si and GaAs relative to the HfSiO4 band gap. We evaluate the. possibility of these defects acting as fixed charge. Native defects lead to the change of valence and conduction band offsets. Gate leakage current is evaluated by the band offset. In addition, we also investigate diffusions of native defects, and discuss how they affect the MOS device performance. 展开更多
关键词 MOS SI of Impact of Native defects in the High Dielectric Constant Oxide HfSiO4 on MOS Device Performance GAAS in on
在线阅读 下载PDF
Influence of deep defects on electrical properties of Ni/4H-SiC Schottky diode
11
作者 Jin-Lan Li Yun Li +4 位作者 Ling Wang Yue Xu Feng Yan Ping Han Xiao-Li Ji 《Chinese Physics B》 SCIE EI CAS CSCD 2019年第2期400-405,共6页
In this paper, we investigate the influence of deep level defects on the electrical properties of Ni/4H-SiC Schottky diodes by analyzing device current-voltage(I-V) characteristics and deep-level transient spectra(DLT... In this paper, we investigate the influence of deep level defects on the electrical properties of Ni/4H-SiC Schottky diodes by analyzing device current-voltage(I-V) characteristics and deep-level transient spectra(DLTS). Two Schottky barrier heights(SBHs) with different temperature dependences are found in Ni/4 H-SiC Schottky diode above room temperature. DLTS measurements further reveal that two kinds of defects Z_(1/2) and Ti(c)~a are located near the interface between Ni and SiC with the energy levels of E_C-0.67 eV and E_C-0.16 eV respectively. The latter one as the ionized titanium acceptor residing at cubic Si lattice site is thought to be responsible for the low SBH in the localized region of the diode, and therefore inducing the high reverse leakage current of the diode. The experimental results indicate that the Ti(c)~a defect has a strong influence on the electrical and thermal properties of the 4 H-SiC Schottky diode. 展开更多
关键词 4H–SiC SCHOTTKY diodes SCHOTTKY barrier HEIGHTS DEEP defects DLTS
在线阅读 下载PDF
Study on incident laser modulation using surface micro-defects on KH_2PO_4 crystal
12
作者 陈明君 程健 +7 位作者 李明全 肖勇 曲遵世 王勇刚 刘杰 郑丽和 苏良碧 徐军 《Chinese Physics B》 SCIE EI CAS CSCD 2012年第6期249-256,共8页
KH2PO4 crystal is a crucial optical component of inertial confinement fusion. Modulation of an incident laser by surface micro-defects will induce the growth of surface damage, which largely restricts the enhancement ... KH2PO4 crystal is a crucial optical component of inertial confinement fusion. Modulation of an incident laser by surface micro-defects will induce the growth of surface damage, which largely restricts the enhancement of the laser induced damage threshold. The modulation of an incident laser by using different kinds of surface defects are simulated by employing the three-dimensional finite-difference time-domain method. The results indicate that after the modulation of surface defects, the light intensity distribution inside the crystal is badly distorted, with the light intensity enhanced symmetrically. The relations between modulation properties and defect geometries (e.g., width, morphology, and depth of defects) are quite different for different defects. The modulation action is most obvious when the width of surface defects reaches 1.064 p-m. For defects with smooth morphology, such as spherical pits, the degree of modulation is the smallest and the light intensity distribution seems relatively uniform. The degree of modulation increases rapidly with the increase of the depth of surface defects and becomes stable when the depth reaches a critical value. The critical depth is 1.064 μm for cuboid pits and radial cracks, while for ellipsoidal pits the value depends on both the width and the length of the defects. 展开更多
关键词 KH2PO4 crystal surface defects modulation degree three-dimensional finite-differencetime-domain
在线阅读 下载PDF
NaYSiO_(4)∶Ce^(3+)蓝色荧光粉的发光性质及其在白光发光二极管上的应用 被引量:1
13
作者 陈蕾 杨星宇 +2 位作者 张瀚月 宋芳 冷稚华 《发光学报》 EI CAS CSCD 北大核心 2024年第5期745-752,共8页
采用高温固相法合成了NaYSiO_(4)∶xCe^(3+)(0.01≤x≤0.05)系列蓝色荧光粉。NaYSiO_(4)∶xCe^(3+)荧光粉在250~360 nm之间的宽带吸收能与紫外LED芯片很好地匹配。NaYSiO_(4)∶xCe^(3+)荧光粉中存在多个Ce^(3+)离子荧光中心,且在紫外光... 采用高温固相法合成了NaYSiO_(4)∶xCe^(3+)(0.01≤x≤0.05)系列蓝色荧光粉。NaYSiO_(4)∶xCe^(3+)荧光粉在250~360 nm之间的宽带吸收能与紫外LED芯片很好地匹配。NaYSiO_(4)∶xCe^(3+)荧光粉中存在多个Ce^(3+)离子荧光中心,且在紫外光激发下表现出峰值波长位于414 nm附近的宽带蓝光发射。NaYSiO_(4)∶0.02Ce^(3+)荧光粉在300~350 nm紫外光激发下量子效率在25%以上。NaYSiO_(4)∶0.02Ce^(3+)荧光粉表现出优良的化学稳定性,在水中浸泡14 d后荧光强度和量子效率几乎不变。将NaYSiO_(4)∶0.02Ce^(3+)蓝色荧光粉、商用(Sr,Ba)_2SiO_(4)∶Eu^(2+)绿色荧光粉和商用(Ca,Sr)AlSiN_(3)∶Eu^(2+)红色荧光粉涂覆于310 nm紫外LED芯片上制备得到了显色指数高达95的LED器件。当驱动电流从50 mA逐渐增大到300 mA时,制备的LED器件表现出稳定的暖白光发射,其色坐标几乎不变。上述结果说明,本研究报道的NaYSiO_(4)∶0.02Ce^(3+)蓝色荧光粉在紫外LED芯片驱动的白光发光二极管照明上有着潜在应用价值。 展开更多
关键词 NaYSiO_(4):ce^(3+) 高温固相 蓝色荧光粉 白光发光二极管 高显色指数
在线阅读 下载PDF
First-principles study of intrinsic defects,dopants and dopant-defect complexes in LiBH_4 被引量:2
14
作者 张国英 刘贵立 张辉 《Transactions of Nonferrous Metals Society of China》 SCIE EI CAS CSCD 2012年第7期1717-1722,共6页
A first-principles study was reported based on density functional theory of hydrogen vacancy,metal dopants,metal dopant-vacancy complex in LiBH4,a promising material for hydrogen storage.The formation of H vacancy and... A first-principles study was reported based on density functional theory of hydrogen vacancy,metal dopants,metal dopant-vacancy complex in LiBH4,a promising material for hydrogen storage.The formation of H vacancy and metal doping in LiBH4 is difficult,and their concentrations are low.The presence of one kind of defect is helpful to the formation of other kind of defect.Based on the analysis of electronic structure,the improvement of the dehydrogenating kinetics of LiBH4 by metal catalysts is due to the weaker bonding of B—H and the new metal-like system,which makes H atom diffuse easily;H vacancy accounts for a trace amount of BH3 release during the decomposing process of LiBH4;metal dopant weakens the strength of B—H bonds,which reduces the dehydriding temperature of LiBH4.The roles of metal and vacancy in the metal dopant-vacancy complex can be added in LiBH4 system. 展开更多
关键词 LiBH4 hydrogen storage material first-principles calculation defect H diffusion dehydrogenating properties
在线阅读 下载PDF
磁性Ce-La-MOFs@Fe_(3)O_(4)的除氟性能 被引量:1
15
作者 宋江燕 翟涛 +5 位作者 温倩 周融融 杨为森 简绍菊 潘文斌 胡家朋 《材料导报》 EI CAS CSCD 北大核心 2024年第4期38-44,共7页
通过水热法制备了Ce-La-MOFs@Fe_(3)O_(4)复合材料,研究了Ce-La-MOFs@Fe_(3)O_(4)对水溶液中F^(-)的吸附性能,并通过响应曲面法优化了吸附条件。实验结果表明:在pH=3.6、实验温度为40℃、初始氟离子浓度为17.4 mg/L的条件下,Ce-La-MOFs@... 通过水热法制备了Ce-La-MOFs@Fe_(3)O_(4)复合材料,研究了Ce-La-MOFs@Fe_(3)O_(4)对水溶液中F^(-)的吸附性能,并通过响应曲面法优化了吸附条件。实验结果表明:在pH=3.6、实验温度为40℃、初始氟离子浓度为17.4 mg/L的条件下,Ce-La-MOFs@Fe_(3)O_(4)的吸附效果最佳,F^(-)去除率可达94.5%。除氟特性实验数据更适合用Langmuir模型进行描述,拟合得到最大吸附容量(q_(max))为147.23 mg/g,热力学参数ΔG^(o)、ΔH^(o)和ΔS^(o)表明该吸附反应是一个自发吸热的熵增过程。动力学研究表明Ce-La-MOFs@Fe_(3)O_(4)对F^(-)的吸附符合准二级反应动力学过程。对复合材料的形貌和结构进行了表征分析,并结合吸附热力学和动力学研究探讨了吸附机理,该吸附过程主要是离子交换和静电吸附共同作用。共存离子实验、循环再生实验结果显示,Ce-La-MOFs@Fe_(3)O_(4)对F^(-)具有较好的选择性,该复合材料的再生性能较好,回收率可达96%,两次循环后对F^(-)的去除率仍达81.74%。 展开更多
关键词 磁性ce-La-MOFs@Fe_(3)O_(4) 除氟 吸附 响应曲面优化
在线阅读 下载PDF
Sr_(0.5)Zr_(2)(PO_(4))_(3)-(Ce,Sm)PO_(4)复相陶瓷核废物固化体的制备及化学稳定性
16
作者 刘缘 范林杰 +4 位作者 刘昆奇 刘蝶 宋江 刘吉 王军霞 《中国陶瓷》 CAS CSCD 北大核心 2024年第6期13-21,共9页
为同时固化高放废物中的模拟放射性核素Sr、Ce和Sm,采用一步微波烧结工艺成功制备了Sr_(0.5)Zr_(2)(PO_(4))_(3)-(Ce,Sm)PO_(4)复相磷酸盐陶瓷固化体,采用XRD、Raman、SEM-EDS和密度表征研究了其物相组成、微观结构以及致密性,并利用PC... 为同时固化高放废物中的模拟放射性核素Sr、Ce和Sm,采用一步微波烧结工艺成功制备了Sr_(0.5)Zr_(2)(PO_(4))_(3)-(Ce,Sm)PO_(4)复相磷酸盐陶瓷固化体,采用XRD、Raman、SEM-EDS和密度表征研究了其物相组成、微观结构以及致密性,并利用PCT法评估了化学稳定性。结果表明:Sr_(0.5)Zr_(2)(PO_(4))_(3)相和(Ce,Sm)PO_(4)独居石相兼容性好,两相间不发生相互反应;所制备的复相陶瓷固化体晶粒尺寸小,相对密度高于96%,改变Sm/Ce比对固化体的微观结构和致密性无明显影响;PCT测试结果表明Sr、Ce和Sm的元素归一化元素浸出率都较低,与单相磷酸盐陶瓷固化体相比,复相磷酸盐陶瓷固化体具有较为优异的化学稳定性。 展开更多
关键词 Sr_(0.5)Zr_(2)(PO_(4))_(3)-(ce Sm)PO_(4)复相陶瓷固化体 微波烧结 致密性 化学稳定性
在线阅读 下载PDF
无压烧结制备Y_(2)MgAl_(4)SiO_(12)∶Ce^(3+)荧光陶瓷及光学性能
17
作者 王靖涛 王茗 +3 位作者 王森宇 徐祖盛 梁莹盈 张瑞 《发光学报》 EI CAS CSCD 北大核心 2024年第3期434-442,共9页
Y_(3)Al_(5)O_(12)∶Ce^(3+)荧光粉是目前白光LED的主要发光材料,但在使用时存在封装树脂因散热不佳而发生老化等问题。本文采用无压烧结制备了Y_(2)MgAl_(4)SiO_(12)∶Ce^(3+)透明陶瓷荧光体,用于替代荧光粉体和调控发光性能。首先通... Y_(3)Al_(5)O_(12)∶Ce^(3+)荧光粉是目前白光LED的主要发光材料,但在使用时存在封装树脂因散热不佳而发生老化等问题。本文采用无压烧结制备了Y_(2)MgAl_(4)SiO_(12)∶Ce^(3+)透明陶瓷荧光体,用于替代荧光粉体和调控发光性能。首先通过化学共沉淀法制备前驱体粉体,经高温煅烧后采用冷等静压成型,最后在马弗炉中1 600℃煅烧制得透明荧光陶瓷。研究了Ce^(3+)掺杂浓度和样品厚度对材料性能的影响,其中掺杂量为0.5%的样品在800 nm处具有56%的透过率,在450 K下发光强度仍能保持室温强度的84%。与蓝光芯片组装成器件测试表明,荧光陶瓷在蓝光LEDs/LDs的激发下发出白光,其CIE色度坐标分别为(0.307 6,0.332 9)和(0.308 0,0.331 6),光效分别为62.6 lm/W和146.3 lm/W。研究结果表明,YMAS∶Ce荧光陶瓷可应用于白光LEDs/LDs领域。 展开更多
关键词 无压烧结 Y_(2)MgAl_(4)SiO_(12)∶ce^(3+) 荧光陶瓷 白光LEDs/LDs
在线阅读 下载PDF
Crystallinity-defect matching relationship of g-C_(3)N_(4): Experimental and theoretical perspectives
18
作者 Yuhan Li Ziteng Ren +5 位作者 Zhengjiang He Ping Ouyang Youyu Duan Wendong Zhang Kangle Lv Fan Dong 《Green Energy & Environment》 SCIE EI CAS CSCD 2024年第4期623-658,共36页
Good crystallinity can reduce the charge recombination centers caused by defects,whilst structures with strong polycondensation have high charge mobility,leading to more charge transfer to the material surface for rea... Good crystallinity can reduce the charge recombination centers caused by defects,whilst structures with strong polycondensation have high charge mobility,leading to more charge transfer to the material surface for reaction.Much effort has been put into the preparation of a highly efficient g-C_(3)N_(4) with defects to improve its application potential under the premise in high crystallinity.Hence,this review paper emphasizes the importance to balance the defect and crystallinity of g-C_(3)N_(4).In addition,detailed discussion on the relationship between defects and activity of g-C_(3)N_(4) was carried out based on its applications in environmental purification(e.g.,VOCs oxidation,NO_(x) oxidation,H_(2)O_(2) evolution,sterilization,pesticide oxidation)and energy conversion(H_(2) evolution,N_(2) fixation and CO_(2) reduction).Lastly,the challenge in developing more efficient defective g-C_(3)N_(4) photocatalytic materials is summarized. 展开更多
关键词 PHOTOCATALYSIS defect G-C_(3)N_(4) CRYSTALLINITY APPLICATION
在线阅读 下载PDF
Simultaneous passivation of bulk and interface defects through synergistic effect of anion and cation toward efficient and stable planar perovskite solar cells 被引量:4
19
作者 Cong Zhang Huaxin Wang +7 位作者 Haiyun Li Qixin Zhuang Cheng Gong Xiaofei Hu Wensi Cai Shuangyi Zhao Jiangzhao Chen Zhigang Zang 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2021年第12期452-460,I0011,共10页
Bulk and interface carrier nonradiative recombination losses impede the further improvement of power conversion efficiency(PCE)and stability of perovskite solar cells(PSCs).It is highly necessary to develop multifunct... Bulk and interface carrier nonradiative recombination losses impede the further improvement of power conversion efficiency(PCE)and stability of perovskite solar cells(PSCs).It is highly necessary to develop multifunctional strategy to minimize surface and interface nonradiative recombination losses.Herein,we report a bulk and interface defect passivation strategy via the synergistic effect of anions and cations,where multifunctional potassium sulphate(K_(2)SO_(4))is incorporated at SnO_(2)/perovskite interface.We find that K^(+)ions in K_(2)SO_(4)diffuse into perovskite layer and suppress the formation of bulk defects in perovskite films,and the SO_(4)^(2-)ions remain located at interface via the strong chemical interaction with SnO_(2)layer and perovskite layer,respectively.Through this synergistic modification strategy,effective defect passivation and improved energy band alignment are achieved simultaneously.These beneficial effects are translated into an efficiency increase from 19.45%to 21.18%with a low voltage deficit of0.53 V mainly as a result of boosted open-circuit voltage(V_(oc))after K_(2)SO_(4)modification.In addition,the K_(2)SO_(4)modification contributes to ameliorated stability.The present work provides a route to minimize bulk and interface nonradiative recombination losses for the simultaneous realization of PCE and stability enhancement by rational anion and cation synergistic engineering. 展开更多
关键词 Perovskite solar cells Interface engineering K_(2)SO_(4) defect passivation Energy band alignment
在线阅读 下载PDF
Facile Surface Engineering of NiCo_(2)O_(4) to Boost Propane Oxidation Activity
20
作者 Yang Jialei Wang Fengyi +7 位作者 Lei Yang Zhang Mingchao Sun Shiqiang Xu Wenfan Ke Jiaxiang Wu Haojie Li Xingyun Qi Jian 《China Petroleum Processing & Petrochemical Technology》 SCIE CAS CSCD 2024年第1期19-26,共8页
Spinel oxide(NiCo_(2)O_(4))has demonstrated great potential to replace noble metal catalysts for the oxidation reaction of air pollutants.To further boost the oxidation ability of such catalysts,in this study,a facile... Spinel oxide(NiCo_(2)O_(4))has demonstrated great potential to replace noble metal catalysts for the oxidation reaction of air pollutants.To further boost the oxidation ability of such catalysts,in this study,a facile surface-engineering strategy wherein NiCo_(2)O_(4) was treated with different alkali solvents was developed.The obtained catalyst(NiCo_(2)O_(4)-OH)showed a higher surface alkalinity and more surface defects compared to the pristine spinel oxide,including enhanced structural distortion as well as promoted oxygen vacancies.The propane oxidation ability of NiCo_(2)O_(4)-OH was greatly enhanced,with a propane conversion rate that was approximately 6.4 times higher than that of pristine NiCo_(2)O_(4) at a reaction temperature 193℃.This work sets a valuable paradigm for the surface modulation of spinel oxide via alkali treatment to ensure a high-performance oxidation catalyst. 展开更多
关键词 NiCo_(2)O_(4) surface defects alkali treatment propane oxidation
在线阅读 下载PDF
上一页 1 2 28 下一页 到第
使用帮助 返回顶部