Rail defects can pose significant safety risks in railway operations, raising the need for effective detection methods. Acoustic Emission (AE) technology has shown promise for identifying and monitoring these defects,...Rail defects can pose significant safety risks in railway operations, raising the need for effective detection methods. Acoustic Emission (AE) technology has shown promise for identifying and monitoring these defects, and this study evaluates an advanced on-vehicle AE detection approach using bone-conduct sensors—a solution to improve upon previous AE methods of using on-rail sensor installations, which required extensive, costly on-rail sensor networks with limited effectiveness. In response to these challenges, the study specifically explored bone-conduct sensors mounted directly on the vehicle rather than rails by evaluating AE signals generated by the interaction between rails and the train’s wheels while in motion. In this research, a prototype detection system was developed and tested through initial trials at the Nevada Railroad Museum using a track with pre-damaged welding defects. Further testing was conducted at the Transportation Technology Center Inc. (rebranded as MxV Rail) in Colorado, where the system’s performance was evaluated across various defect types and train speeds. The results indicated that bone-conduct sensors were insufficient for detecting AE signals when mounted on moving vehicles. These findings highlight the limitations of contact-based methods in real-world applications and indicate the need for exploring improved, non-contact approaches.展开更多
In integrated circuit(IC)manufacturing,fast,nondestructive,and precise detection of defects in patterned wafers,realized by bright-field microscopy,is one of the critical factors for ensuring the final performance and...In integrated circuit(IC)manufacturing,fast,nondestructive,and precise detection of defects in patterned wafers,realized by bright-field microscopy,is one of the critical factors for ensuring the final performance and yields of chips.With the critical dimensions of IC nanostructures continuing to shrink,directly imaging or classifying deep-subwavelength defects by bright-field microscopy is challenging due to the well-known diffraction barrier,the weak scattering effect,and the faint correlation between the scattering cross-section and the defect morphology.Herein,we propose an optical far-field inspection method based on the form-birefringence scattering imaging of the defective nanostructure,which can identify and classify various defects without requiring optical super-resolution.The technique is built upon the principle of breaking the optical form birefringence of the original periodic nanostructures by the defect perturbation under the anisotropic illumination modes,such as the orthogonally polarized plane waves,then combined with the high-order difference of far-field images.We validated the feasibility and effectiveness of the proposed method in detecting deep subwavelength defects through rigid vector imaging modeling and optical detection experiments of various defective nanostructures based on polarization microscopy.On this basis,an intelligent classification algorithm for typical patterned defects based on a dual-channel AlexNet neural network has been proposed,stabilizing the classification accuracy ofλ/16-sized defects with highly similar features at more than 90%.The strong classification capability of the two-channel network on typical patterned defects can be attributed to the high-order difference image and its transverse gradient being used as the network’s input,which highlights the polarization modulation difference between different patterned defects more significantly than conventional bright-field microscopy results.This work will provide a new but easy-to-operate method for detecting and classifying deep-subwavelength defects in patterned wafers or photomasks,which thus endows current online inspection equipment with more missions in advanced IC manufacturing.展开更多
Correction to:Nano-Micro Lett.(2025)17:24 https://doi.org/10.1007/s40820-024-01515-0 Following publication of the original article[1],the authors reported the author list needed to be updated because the last three au...Correction to:Nano-Micro Lett.(2025)17:24 https://doi.org/10.1007/s40820-024-01515-0 Following publication of the original article[1],the authors reported the author list needed to be updated because the last three author names were duplicated.The correct author list has been provided in this Correction.The original article[1]has been corrected.展开更多
Solution-processed Cu(In,Ga)Se_(2)(CIGS) solar cells suffer from serious carrier recombination and power conversion efficiency(PCE) loss because of the poor film properties and easy formation of defects.Herein, we pro...Solution-processed Cu(In,Ga)Se_(2)(CIGS) solar cells suffer from serious carrier recombination and power conversion efficiency(PCE) loss because of the poor film properties and easy formation of defects.Herein, we propose Ag&Se co-selenization strategy to enhance the crystallization and passivate harmful defects of the CIGS films. The formation of Ag-Se phase during the selenization process enables the formation of large grains and suppresses the deep level defects. It is found that Ag doping can enlarge the depletion region width, lower the Urbach energy and prolong the carrier lifetime. As a result, a champion solution-processed CIGS solar cell presents a high efficiency of 16.48% with the highly improved opencircuit voltage(VOC) of 662 m V and fill factor(FF) of 75.8%. This work provides an efficient strategy to prepare high quality solution-processed CIGS films for high-performance CIGS solar cells.展开更多
Newly built tunnels often encounter a series of defects within the first few years of operation.If not promptly addressed and reinforced,these defects threaten the tunnel's durability and stability and bring sever...Newly built tunnels often encounter a series of defects within the first few years of operation.If not promptly addressed and reinforced,these defects threaten the tunnel's durability and stability and bring severe challenges to its safe operation.This study aims to explore reinforcement techniques for addressing defects in newly built tunnels.The research begins with an analysis of common defects found in newly built tunnels,followed by a case study of the Jinfeng Tunnel in Chongqing,examining the post-construction defects.The actual reinforcement strategies and methods employed for the tunnel are then discussed.Finally,based on the research findings,this study provides insights and references for tunnel operation and construction units in China,aiming to enhance the overall quality of tunnel engineering in the country,align with sustainable development goals,and promote further improvements at a macro level.展开更多
Failure tests were conducted on two concrete-filled steel tubular(CFST)truss arch bridges with a span of approximately 12 m to investigate the influence of initial geometric defects on the in-plane bearing capacity of...Failure tests were conducted on two concrete-filled steel tubular(CFST)truss arch bridges with a span of approximately 12 m to investigate the influence of initial geometric defects on the in-plane bearing capacity of CFST truss arch bridges.The effects of antisymmetric defect on the ultimate bearing capacity,failure mode,structural response,and steel–concrete confinement effect of CFST truss arch bridges under quarter-point loading were analyzed.On this basis,numerical simulations were conducted to investigate the in-plane bearing capacity of CFST truss arch bridges further under different scenarios.The initial defect formof the archwas obtained by using theoretical deduction,and the theoretical basis for the weakening of the ultimate bearing capacity of the arch bridge caused by geometric defects was clarified.Results indicate that the antisymmetric defect does not change the four-hinge failure mode of the model arch under quarter-point loading but increases the local cracking area and crack density of the concrete inside the pipe.The sine geometric defect with an amplitude of L/250 resulted in a 44.4%decrease in the yield load of the single hinge of the model arch,a 10.5%decrease in the failure load of the four hinges,and a 40.9%increase in themaximum vertical deformation during failure.At the initial stage of loading,the steel pipe and the concrete inside the pipe were subjected to relatively independent forces.After reaching 67%of the ultimate load,the catenary arch ribs began to produce a steel pipe concrete constraint effect.The initial geometric defects resulted in a decrease in the load when the constraint effect occurred.The antisymmetric defects with the same amplitude have a greater impact on the in-plane bearing capacity of the CFST arch bridge than the initial geometric defects with symmetry.The linear deviation at L/4 caused by constructionmust be controlled to be less than L/600 to ensure that the internal bearing capacity of the CFST arch bridge reaches 95%of the design bearing capacity.The structural deformation caused by geometric initial defects increases linearly with the increase in defect amplitude.The bearing capacity is weakened because the structural deflection and bending moment are amplified by initial defects.展开更多
Objective Exposure to polycyclic aromatic hydrocarbons(PAHs)or metal(loid)s individually has been associated with neural tube defects(NTDs).However,the impacts of PAH and metal(loid)co-exposure and potential interacti...Objective Exposure to polycyclic aromatic hydrocarbons(PAHs)or metal(loid)s individually has been associated with neural tube defects(NTDs).However,the impacts of PAH and metal(loid)co-exposure and potential interaction effects on NTD risk remain unclear.We conducted a case-control study in China among population with a high prevalence of NTDs to investigate the combined effects of PAH and metal(loid)exposures on the risk of NTD.Methods Cases included 80 women who gave birth to offspring with NTDs,whereas controls were 50 women who delivered infants with no congenital malformations.We analyzed the levels of placental PAHs using gas chromatography and mass spectrometry,PAH-DNA adducts with 32P-post-labeling method,and metal(loid)s with an inductively coupled plasma mass spectrometer.Unconditional logistic regression was employed to estimate the associations between individual exposures and NTDs.Least absolute shrinkage and selection operator(LASSO)penalized regression models were used to select a subset of exposures,while additive interaction models were used to identify interaction effects.Results In the single-exposure models,we found that eight PAHs,PAH-DNA adducts,and 28 metal(loid)s were associated with NTDs.Pyrene,selenium,molybdenum,cadmium,uranium,and rubidium were selected through LASSO regression and were statistically associated with NTDs in the multiple-exposure models.Women with high levels of pyrene and molybdenum or pyrene and selenium exhibited significantly increased risk of having offspring with NTDs,indicating that these combinations may have synergistic effects on the risk of NTDs.Conclusion Our findings suggest that individual PAHs and metal(loid)s,as well as their interactions,may be associated with the risk of NTDs,which warrants further investigation.展开更多
Manganese-based material is a prospective cathode material for aqueous zinc ion batteries(ZIBs)by virtue of its high theoretical capacity,high operating voltage,and low price.However,the manganese dissolution during t...Manganese-based material is a prospective cathode material for aqueous zinc ion batteries(ZIBs)by virtue of its high theoretical capacity,high operating voltage,and low price.However,the manganese dissolution during the electrochemical reaction causes its electrochemical cycling stability to be undesirable.In this work,heterointerface engineering-induced oxygen defects are introduced into heterostructure MnO_(2)(δa-MnO_(2))by in situ electrochemical activation to inhibit manganese dissolution for aqueous zinc ion batteries.Meanwhile,the heterointerface between the disordered amorphous and the crystalline MnO_(2)ofδa-MnO_(2)is decisive for the formation of oxygen defects.And the experimental results indicate that the manganese dissolution ofδa-MnO_(2)is considerably inhibited during the charge/discharge cycle.Theoretical analysis indicates that the oxygen defect regulates the electronic and band structure and the Mn-O bonding state of the electrode material,thereby promoting electron transport kinetics as well as inhibiting Mn dissolution.Consequently,the capacity ofδa-MnO_(2)does not degrade after 100 cycles at a current density of 0.5 Ag^(-1)and also 91%capacity retention after 500cycles at 1 Ag^(-1).This study provides a promising insight into the development of high-performance manganese-based cathode materials through a facile and low-cost strategy.展开更多
Smart manufacturing is a process that optimizes factory performance and production quality by utilizing various technologies including the Internet of Things(IoT)and artificial intelligence(AI).Quality control is an i...Smart manufacturing is a process that optimizes factory performance and production quality by utilizing various technologies including the Internet of Things(IoT)and artificial intelligence(AI).Quality control is an important part of today’s smart manufacturing process,effectively reducing costs and enhancing operational efficiency.As technology in the industry becomes more advanced,identifying and classifying defects has become an essential element in ensuring the quality of products during the manufacturing process.In this study,we introduce a CNN model for classifying defects on hot-rolled steel strip surfaces using hybrid deep learning techniques,incorporating a global average pooling(GAP)layer and a machine learning-based SVM classifier,with the aim of enhancing accuracy.Initially,features are extracted by the VGG19 convolutional block.Then,after processing through the GAP layer,the extracted features are fed to the SVM classifier for classification.For this purpose,we collected images from publicly available datasets,including the Xsteel surface defect dataset(XSDD)and the NEU surface defect(NEU-CLS)datasets,and we employed offline data augmentation techniques to balance and increase the size of the datasets.The outcome of experiments shows that the proposed methodology achieves the highest metrics score,with 99.79%accuracy,99.80%precision,99.79%recall,and a 99.79%F1-score for the NEU-CLS dataset.Similarly,it achieves 99.64%accuracy,99.65%precision,99.63%recall,and a 99.64%F1-score for the XSDD dataset.A comparison of the proposed methodology to the most recent study showed that it achieved superior results as compared to the other studies.展开更多
Segment Anything Model(SAM)is a cutting-edge model that has shown impressive performance in general object segmentation.The birth of the segment anything is a groundbreaking step towards creating a universal intellige...Segment Anything Model(SAM)is a cutting-edge model that has shown impressive performance in general object segmentation.The birth of the segment anything is a groundbreaking step towards creating a universal intelligent model.Due to its superior performance in general object segmentation,it quickly gained attention and interest.This makes SAM particularly attractive in industrial surface defect segmentation,especially for complex industrial scenes with limited training data.However,its segmentation ability for specific industrial scenes remains unknown.Therefore,in this work,we select three representative and complex industrial surface defect detection scenarios,namely strip steel surface defects,tile surface defects,and rail surface defects,to evaluate the segmentation performance of SAM.Our results show that although SAM has great potential in general object segmentation,it cannot achieve satisfactory performance in complex industrial scenes.Our test results are available at:https://github.com/VDT-2048/SAM-IS.展开更多
Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,maki...Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,making it a widely adopted approach in various industrial fields.This paper mainly studied the defect detection method for nonwoven materials based on the improved Nano Det-Plus model.Using the constructed samples of defects in nonwoven materials as the research objects,transfer learning experiments were conducted based on the Nano DetPlus object detection framework.Within this framework,the Backbone,path aggregation feature pyramid network(PAFPN)and Head network models were compared and trained through a process of freezing,with the ultimate aim of bolstering the model's feature extraction abilities and elevating detection accuracy.The half-precision quantization method was used to optimize the model after transfer learning experiments,reducing model weights and computational complexity to improve the detection speed.Performance comparisons were conducted between the improved model and the original Nano Det-Plus model,YOLO,SSD and other common industrial defect detection algorithms,validating that the improved methods based on transfer learning and semi-precision quantization enabled the model to meet the practical requirements of industrial production.展开更多
To investigate the effect of void defects on the shock response of hexanitrohexaazaisowurtzitane(CL-20)co-crystals,shock responses of CL-20 co-crystals with energetic materials ligands trinitrotoluene(TNT),1,3-dinitro...To investigate the effect of void defects on the shock response of hexanitrohexaazaisowurtzitane(CL-20)co-crystals,shock responses of CL-20 co-crystals with energetic materials ligands trinitrotoluene(TNT),1,3-dinitrobenzene(DNB),solvents ligands dimethyl carbonate(DMC) and gamma-butyrolactone(GBL)with void were simulated,using molecular dynamics method and reactive force field.It is found that the CL-20 co-crystals with void defects will form hot spots when impacted,significantly affecting the decomposition of molecules around the void.The degree of molecular fragmentation is relatively low under the reflection velocity of 2 km/s,and the main reactions are the formation of dimer and the shedding of nitro groups.The existence of voids reduces the safety of CL-20 co-crystals,which induced the sensitivity of energetic co-crystals CL-20/TNT and CL-20/DNB to increase more significantly.Detonation has occurred under the reflection velocity of 4 km/s,energetic co-crystals are easier to polymerize than solvent co-crystals,and are not obviously affected by voids.The results show that the energy of the wave decreases after sweeping over the void,which reduces the chemical reaction frequency downstream of the void and affects the detonation performance,especially the solvent co-crystals.展开更多
Background:Given the pervasive issues of obesity and diabetes both in Puerto Rico and the broader United States,there is a compelling need to investigate the intricate interplay among body mass index(BMI),pregesta-tio...Background:Given the pervasive issues of obesity and diabetes both in Puerto Rico and the broader United States,there is a compelling need to investigate the intricate interplay among body mass index(BMI),pregesta-tional,and gestational maternal diabetes,and their potential impact on the occurrence of congenital heart defects(CHD)during neonatal development.Methods:Using the comprehensive System of Vigilance and Surveillance of Congenital Defects in Puerto Rico,we conducted a focused analysis on neonates diagnosed with CHD between 2016 and 2020.Our assessment encompassed a range of variables,including maternal age,gestational age,BMI,pregestational diabetes,gestational diabetes,hypertension,history of abortion,and presence of preeclampsia.Results:A cohort of 673 patients was included in our study.The average maternal age was 26 years,within a range of 22 to 32 years.The mean gestational age measured 39 weeks,with a median span of 38 to 39 weeks.Of the 673 patients,274(41%)mothers gave birth to neonates diagnosed with CHD.Within this group,22 cases were linked to pre-gestational diabetes,while 202 were not;20 instances were associated with gestational diabetes,compared to 200 without;and 148 cases exhibited an overweight or obese BMI,whereas 126 displayed a normal BMI.Conclusion:We identified a statistically significant correlation between pre-gestational diabetes mellitus and the occurrence of CHD.However,our analysis did not show a statistically significant association between maternal BMI and the likelihood of CHD.These results may aid in developing effective strategies to prevent and manage CHD in neonates.展开更多
BACKGROUND Cartilage defects are some of the most common causes of arthritis.Cartilage lesions caused by inflammation,trauma or degenerative disease normally result in osteochondral defects.Previous studies have shown...BACKGROUND Cartilage defects are some of the most common causes of arthritis.Cartilage lesions caused by inflammation,trauma or degenerative disease normally result in osteochondral defects.Previous studies have shown that decellularized extracellular matrix(ECM)derived from autologous,allogenic,or xenogeneic mesenchymal stromal cells(MSCs)can effectively restore osteochondral integrity.AIM To determine whether the decellularized ECM of antler reserve mesenchymal cells(RMCs),a xenogeneic material from antler stem cells,is superior to the currently available treatments for osteochondral defects.METHODS We isolated the RMCs from a 60-d-old sika deer antler and cultured them in vitro to 70%confluence;50 mg/mL L-ascorbic acid was then added to the medium to stimulate ECM deposition.Decellularized sheets of adipocyte-derived MSCs(aMSCs)and antlerogenic periosteal cells(another type of antler stem cells)were used as the controls.Three weeks after ascorbic acid stimulation,the ECM sheets were harvested and applied to the osteochondral defects in rat knee joints.RESULTS The defects were successfully repaired by applying the ECM-sheets.The highest quality of repair was achieved in the RMC-ECM group both in vitro(including cell attachment and proliferation),and in vivo(including the simultaneous regeneration of well-vascularized subchondral bone and avascular articular hyaline cartilage integrated with surrounding native tissues).Notably,the antler-stem-cell-derived ECM(xenogeneic)performed better than the aMSC-ECM(allogenic),while the ECM of the active antler stem cells was superior to that of the quiescent antler stem cells.CONCLUSION Decellularized xenogeneic ECM derived from the antler stem cell,particularly the active form(RMC-ECM),can achieve high quality repair/reconstruction of osteochondral defects,suggesting that selection of decellularized ECM for such repair should be focused more on bioactivity rather than kinship.展开更多
Minimally invasive approaches for cardiac surgery in children have been lagging in comparison to the adult world.A wide range of the most common congenital heart defects in infants and children can be repaired suc-ces...Minimally invasive approaches for cardiac surgery in children have been lagging in comparison to the adult world.A wide range of the most common congenital heart defects in infants and children can be repaired suc-cessfully through a variety of non-sternotomy incisions.This has been shown to be associated with superior cos-metic results,shorter hospital stays,and rapid return to full activity compared to sternotomy.These approaches have been around for decades,but they have not been widely adopted for a variety of reasons.Right axillary thor-acotomy is one of these approaches that we believe should be the new standard for the repair of a wide variety of heart defects in children and will be the focus of our current review.展开更多
Niobium pentoxide(Nb_(2)O_(5))is deemed one of the promising anode materials for lithium-ion batteries(LIBs)for its outstanding intrinsic fast Li-(de)intercalation kinetics.The specific capacity,however,is still limit...Niobium pentoxide(Nb_(2)O_(5))is deemed one of the promising anode materials for lithium-ion batteries(LIBs)for its outstanding intrinsic fast Li-(de)intercalation kinetics.The specific capacity,however,is still limited,because the(de)intercalation of excessive Li-ions brings the undesired stress to damage Nb_(2)O_(5) crystals.To increase the capacity of Nb_(2)O_(5) and alleviate the lattice distortion caused by stress,numerous homogeneous H-and M-phases junction interfaces were proposed to produce coercive stress within theNb_(2)O_(5)crystals.Such interfaces bring about rich oxygen vacancies with structural shrinkage tendency,which pre-generate coercive stress to resist the expansion stress caused by excessive Li-ions intercalation.Therefore,the synthesized Nb_(2)O_(5) achieves the highest lithium storage capacity of 315 mA h g−1 to date,and exhibits high-rate performance(118 mA h g^(-1) at 20 C)as well as excellent cycling stability(138 mA h g^(-1) at 10 C after 600 cycles).展开更多
The microstructure significantly influences the superconducting properties.Herein,the defect structures and atomic arrangements in high-temperature Bi_(2)Sr_(2)CaCu_(2)O8_(+σ) superconducting wire are directly charac...The microstructure significantly influences the superconducting properties.Herein,the defect structures and atomic arrangements in high-temperature Bi_(2)Sr_(2)CaCu_(2)O8_(+σ) superconducting wire are directly characterized via stateof-the-art scanning transmission electron microscopy.Interstitial oxygen atoms are observed in both the charge reservoir layers and grain boundaries in the doped superconductor.Inclusion phases with varied numbers of CuO_(2) layers are found,and twist interfaces with different angles are identified.This study provides insights into the structures of Bi-2212 wire and lays the groundwork for guiding the design of microstructures and optimizing the production methods to enhance superconducting performance.展开更多
Dye pollution is a common pollutant in wastewater that poses a serious threat to human health.Layered double hydroxide(LDH)is a commonly used adsorbent for dye removal.However,its adsorption efficiency is significantl...Dye pollution is a common pollutant in wastewater that poses a serious threat to human health.Layered double hydroxide(LDH)is a commonly used adsorbent for dye removal.However,its adsorption efficiency is significantly limited by the limited adsorption active sites of the adsorbent.In this paper,a defects-rich MgFe LDH adsorbent for anionic dye wastewater was synthesized by a simple hydrothermal method and alkaline etching.Different analytical techniques,such as XRD,FT-IR,SEM,TEM,XPS,and N2 adsorption-desorption isotherm,were used to verify the chemical composition and surface characteristics of the materials,and the effects of pH,temperature,and contact time on the adsorption effect of methyl orange and the adsorption mechanism were analyzed.Alkaline etching of Al and Zn in the laminate generated defects that expose unsaturated coordination centers and create abundant adsorption sites,which can electrostatically attract and coordinate with dye ions.At 25℃,the adsorption capacity of MgFe LDH with Al etched and MgFe LDH with Zn etched for methyl orange dye reached 1722 mg·g^(-1 ) and 1685 mg·g^(-1 ),respectively,much higher than that of MgFe LDH(544 mg·g^(-1 )).This work provides a promising method for the removal of dye wastewater by adsorption and a new idea for the design and development of high-performance dye wastewater adsorbents.展开更多
An exquisite mesostructure model was presented to predict the effective elastic modulus of concrete,in which concrete is realized as a four-phase composite material consisting of coarse aggregates,mortar matrix,interf...An exquisite mesostructure model was presented to predict the effective elastic modulus of concrete,in which concrete is realized as a four-phase composite material consisting of coarse aggregates,mortar matrix,interfacial transition zone(ITZ),and initial defects.With the three-dimensional(3D)finite element(FE)simulation,the highly heterogeneous composite elastic behavior of concrete was modeled,and the predicted results were compared with theoretical estimations for validation.Monte Carlo(MC)simulations were performed with the proposed mesostructure model to investigate the various factors of initial defects influencing the elastic modulus of concrete,such as the shape and concentration(pore volume fraction or crack density)of microspores and microcracks.It is found that the effective elastic modulus of concrete decreases with the increase of initial defects concentration,while the distribution and shape characteristics also exert certain influences due to the stress concentration caused by irregular inclusion shape.展开更多
In order to explore the effect of vacancy defects on the structural,electronic,magnetic and optical properties of CoS_(2) and FeS_(2),first-principles calculation method was used to investigate the alloys.The calculat...In order to explore the effect of vacancy defects on the structural,electronic,magnetic and optical properties of CoS_(2) and FeS_(2),first-principles calculation method was used to investigate the alloys.The calculated results of materials without vacancy are consistent with those reported in the literatures,while the results of materials with vacancy defect were different from those of literatures due to the difference vacancy concentration.The Co vacancy defect hardly changes the half-metallic characteristic of CoS_(2).The Fe vacancy defect changes FeS_(2) from semiconductor to half-metal,and the bottom of the spin-down conduction band changes from the p orbital state of S to the d(t_(2g))orbital state of Fe,while the top of the valence band remains the d orbital d(eg)state of Fe.The half-metallic Co vacancy defects of CoS_(2) and Fe vacancy defects of FeS_(2) are expected to be used in spintronic devices.S vacancy defects make both CoS_(2) and FeS_(2) metallic.Both the Co and S vacancy defects lead to the decrease of the magnetic moment of CoS_(2),while both the Fe and S vacancy defects lead to the obvious magnetic property of FeS_(2).Vacancy defects enhance the absorption coefficient of infrared band and long band of visible light obviously,and produce obvious red shift phenomenon,which is expected to be used in photoelectric devices.展开更多
文摘Rail defects can pose significant safety risks in railway operations, raising the need for effective detection methods. Acoustic Emission (AE) technology has shown promise for identifying and monitoring these defects, and this study evaluates an advanced on-vehicle AE detection approach using bone-conduct sensors—a solution to improve upon previous AE methods of using on-rail sensor installations, which required extensive, costly on-rail sensor networks with limited effectiveness. In response to these challenges, the study specifically explored bone-conduct sensors mounted directly on the vehicle rather than rails by evaluating AE signals generated by the interaction between rails and the train’s wheels while in motion. In this research, a prototype detection system was developed and tested through initial trials at the Nevada Railroad Museum using a track with pre-damaged welding defects. Further testing was conducted at the Transportation Technology Center Inc. (rebranded as MxV Rail) in Colorado, where the system’s performance was evaluated across various defect types and train speeds. The results indicated that bone-conduct sensors were insufficient for detecting AE signals when mounted on moving vehicles. These findings highlight the limitations of contact-based methods in real-world applications and indicate the need for exploring improved, non-contact approaches.
基金funded by National Natural Science Foundation of China(Grant Nos.52130504,52305577,and 52175509)the Key Research and Development Plan of Hubei Province(Grant No.2022BAA013)+4 种基金the Major Program(JD)of Hubei Province(Grant No.2023BAA008-2)the Interdisciplinary Research Program of Huazhong University of Science and Technology(2023JCYJ047)the Innovation Project of Optics Valley Laboratory(Grant No.OVL2023PY003)the Postdoctoral Fellowship Program(Grade B)of China Postdoctoral Science Foundation(Grant No.GZB20230244)the fellowship from the China Postdoctoral Science Foundation(2024M750995)。
文摘In integrated circuit(IC)manufacturing,fast,nondestructive,and precise detection of defects in patterned wafers,realized by bright-field microscopy,is one of the critical factors for ensuring the final performance and yields of chips.With the critical dimensions of IC nanostructures continuing to shrink,directly imaging or classifying deep-subwavelength defects by bright-field microscopy is challenging due to the well-known diffraction barrier,the weak scattering effect,and the faint correlation between the scattering cross-section and the defect morphology.Herein,we propose an optical far-field inspection method based on the form-birefringence scattering imaging of the defective nanostructure,which can identify and classify various defects without requiring optical super-resolution.The technique is built upon the principle of breaking the optical form birefringence of the original periodic nanostructures by the defect perturbation under the anisotropic illumination modes,such as the orthogonally polarized plane waves,then combined with the high-order difference of far-field images.We validated the feasibility and effectiveness of the proposed method in detecting deep subwavelength defects through rigid vector imaging modeling and optical detection experiments of various defective nanostructures based on polarization microscopy.On this basis,an intelligent classification algorithm for typical patterned defects based on a dual-channel AlexNet neural network has been proposed,stabilizing the classification accuracy ofλ/16-sized defects with highly similar features at more than 90%.The strong classification capability of the two-channel network on typical patterned defects can be attributed to the high-order difference image and its transverse gradient being used as the network’s input,which highlights the polarization modulation difference between different patterned defects more significantly than conventional bright-field microscopy results.This work will provide a new but easy-to-operate method for detecting and classifying deep-subwavelength defects in patterned wafers or photomasks,which thus endows current online inspection equipment with more missions in advanced IC manufacturing.
文摘Correction to:Nano-Micro Lett.(2025)17:24 https://doi.org/10.1007/s40820-024-01515-0 Following publication of the original article[1],the authors reported the author list needed to be updated because the last three author names were duplicated.The correct author list has been provided in this Correction.The original article[1]has been corrected.
基金National Natural Science Foundation of China (62104061, 62074052, 61974173 and 52072327)。
文摘Solution-processed Cu(In,Ga)Se_(2)(CIGS) solar cells suffer from serious carrier recombination and power conversion efficiency(PCE) loss because of the poor film properties and easy formation of defects.Herein, we propose Ag&Se co-selenization strategy to enhance the crystallization and passivate harmful defects of the CIGS films. The formation of Ag-Se phase during the selenization process enables the formation of large grains and suppresses the deep level defects. It is found that Ag doping can enlarge the depletion region width, lower the Urbach energy and prolong the carrier lifetime. As a result, a champion solution-processed CIGS solar cell presents a high efficiency of 16.48% with the highly improved opencircuit voltage(VOC) of 662 m V and fill factor(FF) of 75.8%. This work provides an efficient strategy to prepare high quality solution-processed CIGS films for high-performance CIGS solar cells.
文摘Newly built tunnels often encounter a series of defects within the first few years of operation.If not promptly addressed and reinforced,these defects threaten the tunnel's durability and stability and bring severe challenges to its safe operation.This study aims to explore reinforcement techniques for addressing defects in newly built tunnels.The research begins with an analysis of common defects found in newly built tunnels,followed by a case study of the Jinfeng Tunnel in Chongqing,examining the post-construction defects.The actual reinforcement strategies and methods employed for the tunnel are then discussed.Finally,based on the research findings,this study provides insights and references for tunnel operation and construction units in China,aiming to enhance the overall quality of tunnel engineering in the country,align with sustainable development goals,and promote further improvements at a macro level.
基金National Natural Science Foundation of China(Grant No.52408314)Science and Technology Project of Sichuan Provincial TransportationDepartment(GrantNo.2023-ZL-03)Science and Technology Project of Guizhou Provincial Transportation Department(Grant No.2024-122-018).
文摘Failure tests were conducted on two concrete-filled steel tubular(CFST)truss arch bridges with a span of approximately 12 m to investigate the influence of initial geometric defects on the in-plane bearing capacity of CFST truss arch bridges.The effects of antisymmetric defect on the ultimate bearing capacity,failure mode,structural response,and steel–concrete confinement effect of CFST truss arch bridges under quarter-point loading were analyzed.On this basis,numerical simulations were conducted to investigate the in-plane bearing capacity of CFST truss arch bridges further under different scenarios.The initial defect formof the archwas obtained by using theoretical deduction,and the theoretical basis for the weakening of the ultimate bearing capacity of the arch bridge caused by geometric defects was clarified.Results indicate that the antisymmetric defect does not change the four-hinge failure mode of the model arch under quarter-point loading but increases the local cracking area and crack density of the concrete inside the pipe.The sine geometric defect with an amplitude of L/250 resulted in a 44.4%decrease in the yield load of the single hinge of the model arch,a 10.5%decrease in the failure load of the four hinges,and a 40.9%increase in themaximum vertical deformation during failure.At the initial stage of loading,the steel pipe and the concrete inside the pipe were subjected to relatively independent forces.After reaching 67%of the ultimate load,the catenary arch ribs began to produce a steel pipe concrete constraint effect.The initial geometric defects resulted in a decrease in the load when the constraint effect occurred.The antisymmetric defects with the same amplitude have a greater impact on the in-plane bearing capacity of the CFST arch bridge than the initial geometric defects with symmetry.The linear deviation at L/4 caused by constructionmust be controlled to be less than L/600 to ensure that the internal bearing capacity of the CFST arch bridge reaches 95%of the design bearing capacity.The structural deformation caused by geometric initial defects increases linearly with the increase in defect amplitude.The bearing capacity is weakened because the structural deflection and bending moment are amplified by initial defects.
基金supported by the National Key Research and Development Program,Ministry of Science and Technology of the People's Republic of China(Grant No.2021YFC2701001)the National Natural Science Foundation of China(Grant No.81973056).
文摘Objective Exposure to polycyclic aromatic hydrocarbons(PAHs)or metal(loid)s individually has been associated with neural tube defects(NTDs).However,the impacts of PAH and metal(loid)co-exposure and potential interaction effects on NTD risk remain unclear.We conducted a case-control study in China among population with a high prevalence of NTDs to investigate the combined effects of PAH and metal(loid)exposures on the risk of NTD.Methods Cases included 80 women who gave birth to offspring with NTDs,whereas controls were 50 women who delivered infants with no congenital malformations.We analyzed the levels of placental PAHs using gas chromatography and mass spectrometry,PAH-DNA adducts with 32P-post-labeling method,and metal(loid)s with an inductively coupled plasma mass spectrometer.Unconditional logistic regression was employed to estimate the associations between individual exposures and NTDs.Least absolute shrinkage and selection operator(LASSO)penalized regression models were used to select a subset of exposures,while additive interaction models were used to identify interaction effects.Results In the single-exposure models,we found that eight PAHs,PAH-DNA adducts,and 28 metal(loid)s were associated with NTDs.Pyrene,selenium,molybdenum,cadmium,uranium,and rubidium were selected through LASSO regression and were statistically associated with NTDs in the multiple-exposure models.Women with high levels of pyrene and molybdenum or pyrene and selenium exhibited significantly increased risk of having offspring with NTDs,indicating that these combinations may have synergistic effects on the risk of NTDs.Conclusion Our findings suggest that individual PAHs and metal(loid)s,as well as their interactions,may be associated with the risk of NTDs,which warrants further investigation.
基金funds from the National Natural Science Foundation of China(51772082 and 51804106)the Natural Science Foundation of Hunan Province(2023JJ10005)
文摘Manganese-based material is a prospective cathode material for aqueous zinc ion batteries(ZIBs)by virtue of its high theoretical capacity,high operating voltage,and low price.However,the manganese dissolution during the electrochemical reaction causes its electrochemical cycling stability to be undesirable.In this work,heterointerface engineering-induced oxygen defects are introduced into heterostructure MnO_(2)(δa-MnO_(2))by in situ electrochemical activation to inhibit manganese dissolution for aqueous zinc ion batteries.Meanwhile,the heterointerface between the disordered amorphous and the crystalline MnO_(2)ofδa-MnO_(2)is decisive for the formation of oxygen defects.And the experimental results indicate that the manganese dissolution ofδa-MnO_(2)is considerably inhibited during the charge/discharge cycle.Theoretical analysis indicates that the oxygen defect regulates the electronic and band structure and the Mn-O bonding state of the electrode material,thereby promoting electron transport kinetics as well as inhibiting Mn dissolution.Consequently,the capacity ofδa-MnO_(2)does not degrade after 100 cycles at a current density of 0.5 Ag^(-1)and also 91%capacity retention after 500cycles at 1 Ag^(-1).This study provides a promising insight into the development of high-performance manganese-based cathode materials through a facile and low-cost strategy.
基金This research was supported by the Basic Science Research Program through the National Research Foundation of Korea(NRF)funded by the Ministry of Education(NRF-2022R1I1A3063493).
文摘Smart manufacturing is a process that optimizes factory performance and production quality by utilizing various technologies including the Internet of Things(IoT)and artificial intelligence(AI).Quality control is an important part of today’s smart manufacturing process,effectively reducing costs and enhancing operational efficiency.As technology in the industry becomes more advanced,identifying and classifying defects has become an essential element in ensuring the quality of products during the manufacturing process.In this study,we introduce a CNN model for classifying defects on hot-rolled steel strip surfaces using hybrid deep learning techniques,incorporating a global average pooling(GAP)layer and a machine learning-based SVM classifier,with the aim of enhancing accuracy.Initially,features are extracted by the VGG19 convolutional block.Then,after processing through the GAP layer,the extracted features are fed to the SVM classifier for classification.For this purpose,we collected images from publicly available datasets,including the Xsteel surface defect dataset(XSDD)and the NEU surface defect(NEU-CLS)datasets,and we employed offline data augmentation techniques to balance and increase the size of the datasets.The outcome of experiments shows that the proposed methodology achieves the highest metrics score,with 99.79%accuracy,99.80%precision,99.79%recall,and a 99.79%F1-score for the NEU-CLS dataset.Similarly,it achieves 99.64%accuracy,99.65%precision,99.63%recall,and a 99.64%F1-score for the XSDD dataset.A comparison of the proposed methodology to the most recent study showed that it achieved superior results as compared to the other studies.
基金supported by the National Natural Science Foundation of China(51805078)Project of National Key Laboratory of Advanced Casting Technologies(CAT2023-002)the 111 Project(B16009).
文摘Segment Anything Model(SAM)is a cutting-edge model that has shown impressive performance in general object segmentation.The birth of the segment anything is a groundbreaking step towards creating a universal intelligent model.Due to its superior performance in general object segmentation,it quickly gained attention and interest.This makes SAM particularly attractive in industrial surface defect segmentation,especially for complex industrial scenes with limited training data.However,its segmentation ability for specific industrial scenes remains unknown.Therefore,in this work,we select three representative and complex industrial surface defect detection scenarios,namely strip steel surface defects,tile surface defects,and rail surface defects,to evaluate the segmentation performance of SAM.Our results show that although SAM has great potential in general object segmentation,it cannot achieve satisfactory performance in complex industrial scenes.Our test results are available at:https://github.com/VDT-2048/SAM-IS.
基金National Key Research and Development Program of China(Nos.2022YFB4700600 and 2022YFB4700605)National Natural Science Foundation of China(Nos.61771123 and 62171116)+1 种基金Fundamental Research Funds for the Central UniversitiesGraduate Student Innovation Fund of Donghua University,China(No.CUSF-DH-D-2022044)。
文摘Defect detection is vital in the nonwoven material industry,ensuring surface quality before producing finished products.Recently,deep learning and computer vision advancements have revolutionized defect detection,making it a widely adopted approach in various industrial fields.This paper mainly studied the defect detection method for nonwoven materials based on the improved Nano Det-Plus model.Using the constructed samples of defects in nonwoven materials as the research objects,transfer learning experiments were conducted based on the Nano DetPlus object detection framework.Within this framework,the Backbone,path aggregation feature pyramid network(PAFPN)and Head network models were compared and trained through a process of freezing,with the ultimate aim of bolstering the model's feature extraction abilities and elevating detection accuracy.The half-precision quantization method was used to optimize the model after transfer learning experiments,reducing model weights and computational complexity to improve the detection speed.Performance comparisons were conducted between the improved model and the original Nano Det-Plus model,YOLO,SSD and other common industrial defect detection algorithms,validating that the improved methods based on transfer learning and semi-precision quantization enabled the model to meet the practical requirements of industrial production.
基金supported by the National Natural Science Foundation of China (22275018)the Project of State Key Laboratory of Explosion Science and Technology (Beijing Institute of Technology)(Grant No.QNKT20-04)。
文摘To investigate the effect of void defects on the shock response of hexanitrohexaazaisowurtzitane(CL-20)co-crystals,shock responses of CL-20 co-crystals with energetic materials ligands trinitrotoluene(TNT),1,3-dinitrobenzene(DNB),solvents ligands dimethyl carbonate(DMC) and gamma-butyrolactone(GBL)with void were simulated,using molecular dynamics method and reactive force field.It is found that the CL-20 co-crystals with void defects will form hot spots when impacted,significantly affecting the decomposition of molecules around the void.The degree of molecular fragmentation is relatively low under the reflection velocity of 2 km/s,and the main reactions are the formation of dimer and the shedding of nitro groups.The existence of voids reduces the safety of CL-20 co-crystals,which induced the sensitivity of energetic co-crystals CL-20/TNT and CL-20/DNB to increase more significantly.Detonation has occurred under the reflection velocity of 4 km/s,energetic co-crystals are easier to polymerize than solvent co-crystals,and are not obviously affected by voids.The results show that the energy of the wave decreases after sweeping over the void,which reduces the chemical reaction frequency downstream of the void and affects the detonation performance,especially the solvent co-crystals.
基金The San Juan Bautista School of Medicine’s Institutional Review Board approved the study(EMSJBIRB-7-2021).
文摘Background:Given the pervasive issues of obesity and diabetes both in Puerto Rico and the broader United States,there is a compelling need to investigate the intricate interplay among body mass index(BMI),pregesta-tional,and gestational maternal diabetes,and their potential impact on the occurrence of congenital heart defects(CHD)during neonatal development.Methods:Using the comprehensive System of Vigilance and Surveillance of Congenital Defects in Puerto Rico,we conducted a focused analysis on neonates diagnosed with CHD between 2016 and 2020.Our assessment encompassed a range of variables,including maternal age,gestational age,BMI,pregestational diabetes,gestational diabetes,hypertension,history of abortion,and presence of preeclampsia.Results:A cohort of 673 patients was included in our study.The average maternal age was 26 years,within a range of 22 to 32 years.The mean gestational age measured 39 weeks,with a median span of 38 to 39 weeks.Of the 673 patients,274(41%)mothers gave birth to neonates diagnosed with CHD.Within this group,22 cases were linked to pre-gestational diabetes,while 202 were not;20 instances were associated with gestational diabetes,compared to 200 without;and 148 cases exhibited an overweight or obese BMI,whereas 126 displayed a normal BMI.Conclusion:We identified a statistically significant correlation between pre-gestational diabetes mellitus and the occurrence of CHD.However,our analysis did not show a statistically significant association between maternal BMI and the likelihood of CHD.These results may aid in developing effective strategies to prevent and manage CHD in neonates.
基金National Natural Science Foundation of China,No.U20A20403This study was conducted in accordance with the Animal Ethics Committee of the Institute of Antler Science and Product Technology,Changchun Sci-Tech University(AEC No:CKARI202309).
文摘BACKGROUND Cartilage defects are some of the most common causes of arthritis.Cartilage lesions caused by inflammation,trauma or degenerative disease normally result in osteochondral defects.Previous studies have shown that decellularized extracellular matrix(ECM)derived from autologous,allogenic,or xenogeneic mesenchymal stromal cells(MSCs)can effectively restore osteochondral integrity.AIM To determine whether the decellularized ECM of antler reserve mesenchymal cells(RMCs),a xenogeneic material from antler stem cells,is superior to the currently available treatments for osteochondral defects.METHODS We isolated the RMCs from a 60-d-old sika deer antler and cultured them in vitro to 70%confluence;50 mg/mL L-ascorbic acid was then added to the medium to stimulate ECM deposition.Decellularized sheets of adipocyte-derived MSCs(aMSCs)and antlerogenic periosteal cells(another type of antler stem cells)were used as the controls.Three weeks after ascorbic acid stimulation,the ECM sheets were harvested and applied to the osteochondral defects in rat knee joints.RESULTS The defects were successfully repaired by applying the ECM-sheets.The highest quality of repair was achieved in the RMC-ECM group both in vitro(including cell attachment and proliferation),and in vivo(including the simultaneous regeneration of well-vascularized subchondral bone and avascular articular hyaline cartilage integrated with surrounding native tissues).Notably,the antler-stem-cell-derived ECM(xenogeneic)performed better than the aMSC-ECM(allogenic),while the ECM of the active antler stem cells was superior to that of the quiescent antler stem cells.CONCLUSION Decellularized xenogeneic ECM derived from the antler stem cell,particularly the active form(RMC-ECM),can achieve high quality repair/reconstruction of osteochondral defects,suggesting that selection of decellularized ECM for such repair should be focused more on bioactivity rather than kinship.
文摘Minimally invasive approaches for cardiac surgery in children have been lagging in comparison to the adult world.A wide range of the most common congenital heart defects in infants and children can be repaired suc-cessfully through a variety of non-sternotomy incisions.This has been shown to be associated with superior cos-metic results,shorter hospital stays,and rapid return to full activity compared to sternotomy.These approaches have been around for decades,but they have not been widely adopted for a variety of reasons.Right axillary thor-acotomy is one of these approaches that we believe should be the new standard for the repair of a wide variety of heart defects in children and will be the focus of our current review.
基金supported by the National Natural Science Foundation of China(Nos.51673199,51972301,51677176)the Youth Innovation Promotion Association of CAS(2015148,Y201940)+2 种基金the Youth Innovation Foundation of DICP(ZZBS201615,ZZBS201708)the Dalian Outstanding Young Scientific Talent(2018RJ03)the National Key Research and Development Project(2019YFA0705600)。
文摘Niobium pentoxide(Nb_(2)O_(5))is deemed one of the promising anode materials for lithium-ion batteries(LIBs)for its outstanding intrinsic fast Li-(de)intercalation kinetics.The specific capacity,however,is still limited,because the(de)intercalation of excessive Li-ions brings the undesired stress to damage Nb_(2)O_(5) crystals.To increase the capacity of Nb_(2)O_(5) and alleviate the lattice distortion caused by stress,numerous homogeneous H-and M-phases junction interfaces were proposed to produce coercive stress within theNb_(2)O_(5)crystals.Such interfaces bring about rich oxygen vacancies with structural shrinkage tendency,which pre-generate coercive stress to resist the expansion stress caused by excessive Li-ions intercalation.Therefore,the synthesized Nb_(2)O_(5) achieves the highest lithium storage capacity of 315 mA h g−1 to date,and exhibits high-rate performance(118 mA h g^(-1) at 20 C)as well as excellent cycling stability(138 mA h g^(-1) at 10 C after 600 cycles).
文摘The microstructure significantly influences the superconducting properties.Herein,the defect structures and atomic arrangements in high-temperature Bi_(2)Sr_(2)CaCu_(2)O8_(+σ) superconducting wire are directly characterized via stateof-the-art scanning transmission electron microscopy.Interstitial oxygen atoms are observed in both the charge reservoir layers and grain boundaries in the doped superconductor.Inclusion phases with varied numbers of CuO_(2) layers are found,and twist interfaces with different angles are identified.This study provides insights into the structures of Bi-2212 wire and lays the groundwork for guiding the design of microstructures and optimizing the production methods to enhance superconducting performance.
基金the National Natural Science Foundation of China(21908012)the Natural Science Foundation of Chongqing,China(cstc2020jcyj-msxmX0875 and CSTB2022BSXM-JSX0021)+2 种基金Chongqing Postdoctoral Research Project Special Funding(2023CQBSHTB3110)Postgraduate Research and Innovation Project of Chongqing University of Science and Technology(YKJCX2220541)Major Enterprise Demand Projects with Open Bidding for Selecting the Best Candidates in Yichun City,China(2023JBGSXM05)for the financial support to this work.
文摘Dye pollution is a common pollutant in wastewater that poses a serious threat to human health.Layered double hydroxide(LDH)is a commonly used adsorbent for dye removal.However,its adsorption efficiency is significantly limited by the limited adsorption active sites of the adsorbent.In this paper,a defects-rich MgFe LDH adsorbent for anionic dye wastewater was synthesized by a simple hydrothermal method and alkaline etching.Different analytical techniques,such as XRD,FT-IR,SEM,TEM,XPS,and N2 adsorption-desorption isotherm,were used to verify the chemical composition and surface characteristics of the materials,and the effects of pH,temperature,and contact time on the adsorption effect of methyl orange and the adsorption mechanism were analyzed.Alkaline etching of Al and Zn in the laminate generated defects that expose unsaturated coordination centers and create abundant adsorption sites,which can electrostatically attract and coordinate with dye ions.At 25℃,the adsorption capacity of MgFe LDH with Al etched and MgFe LDH with Zn etched for methyl orange dye reached 1722 mg·g^(-1 ) and 1685 mg·g^(-1 ),respectively,much higher than that of MgFe LDH(544 mg·g^(-1 )).This work provides a promising method for the removal of dye wastewater by adsorption and a new idea for the design and development of high-performance dye wastewater adsorbents.
基金Founded by the National Natural Science Foundation of China(No.42002287)the Fundamental Research Funds for the Central Universities,China University of Geosciences(Wuhan)(No.CUG2106335)。
文摘An exquisite mesostructure model was presented to predict the effective elastic modulus of concrete,in which concrete is realized as a four-phase composite material consisting of coarse aggregates,mortar matrix,interfacial transition zone(ITZ),and initial defects.With the three-dimensional(3D)finite element(FE)simulation,the highly heterogeneous composite elastic behavior of concrete was modeled,and the predicted results were compared with theoretical estimations for validation.Monte Carlo(MC)simulations were performed with the proposed mesostructure model to investigate the various factors of initial defects influencing the elastic modulus of concrete,such as the shape and concentration(pore volume fraction or crack density)of microspores and microcracks.It is found that the effective elastic modulus of concrete decreases with the increase of initial defects concentration,while the distribution and shape characteristics also exert certain influences due to the stress concentration caused by irregular inclusion shape.
基金Funded by the Scientific and Technologial Innovation Programs of Higher Education Institutions in Shanxi (No. 2020L0628)the Taiyuan Institute of Technology Scientific Research Initial Funding (No. 2022KJ072)+2 种基金the Program for the (Reserved) Discipline Leaders of Taiyuan Institute of Technologythe Fundamental Research Funds for the Central Universities (Nos. 2017TS004, 2017TS006, and GK201704005)Supported by HZWTECH for providing computational facilities
文摘In order to explore the effect of vacancy defects on the structural,electronic,magnetic and optical properties of CoS_(2) and FeS_(2),first-principles calculation method was used to investigate the alloys.The calculated results of materials without vacancy are consistent with those reported in the literatures,while the results of materials with vacancy defect were different from those of literatures due to the difference vacancy concentration.The Co vacancy defect hardly changes the half-metallic characteristic of CoS_(2).The Fe vacancy defect changes FeS_(2) from semiconductor to half-metal,and the bottom of the spin-down conduction band changes from the p orbital state of S to the d(t_(2g))orbital state of Fe,while the top of the valence band remains the d orbital d(eg)state of Fe.The half-metallic Co vacancy defects of CoS_(2) and Fe vacancy defects of FeS_(2) are expected to be used in spintronic devices.S vacancy defects make both CoS_(2) and FeS_(2) metallic.Both the Co and S vacancy defects lead to the decrease of the magnetic moment of CoS_(2),while both the Fe and S vacancy defects lead to the obvious magnetic property of FeS_(2).Vacancy defects enhance the absorption coefficient of infrared band and long band of visible light obviously,and produce obvious red shift phenomenon,which is expected to be used in photoelectric devices.