目的克隆阳春砂萜类生物合成途径上游关键酶——3-羟基-3-甲基戊二酰辅酶A还原酶(3-hydroxy-3-methylglutaryl coenzyme A reductase,HMGR)(EC:1.1.1.34)的编码基因;分析基因的功能及其在阳春砂不同组织中的表达。方法用基于RT-PCR的方...目的克隆阳春砂萜类生物合成途径上游关键酶——3-羟基-3-甲基戊二酰辅酶A还原酶(3-hydroxy-3-methylglutaryl coenzyme A reductase,HMGR)(EC:1.1.1.34)的编码基因;分析基因的功能及其在阳春砂不同组织中的表达。方法用基于RT-PCR的方法从阳春砂叶片中获得编码HMGR的cDNA全长序列,克隆基因编码区;用生物信息学的方法对其编码蛋白进行相似性检索和功能分析;用半定量RT-PCR法比较基因在阳春砂不同组织中的表达差异。结果获得了全长2 023 bp的编码阳春砂HMGR的cDNA序列,命名为AvHMGR(GenBank登记号:FJ455511)。AvHMGR编码的蛋白与其他植物来源的HMGR有很高相似性,含有NADPH结合基序和底物HMG-CoA结合基序,N-端有两个跨膜结构域。保守功能结构域的分析结果表明AvHMGR属于3-羟基-3-甲基戊二酰辅酶A还原酶家族。AvHMGR在包括茎、根、果皮和种子团的广泛组织中表达,且在这些组织中的表达量均高于在叶片中的表达。结论从阳春砂中克隆了AvHMGR基因,为进一步鉴定基因功能、探明阳春砂萜类生物合成的基因调控机制打下基础。展开更多
3-羟甲基戊二酰辅酶A-还原酶(3-hydroxy-3-methylglutaryl coenzyme A reductase,HMGR)是甲羟戊酸途径的关键酶。获得芫菁体内HMGR基因信息是确定甲羟戊酸途径与斑蝥素合成相关性的基础。本研究利用RACE技术从细纹豆芫菁Epicauta manner...3-羟甲基戊二酰辅酶A-还原酶(3-hydroxy-3-methylglutaryl coenzyme A reductase,HMGR)是甲羟戊酸途径的关键酶。获得芫菁体内HMGR基因信息是确定甲羟戊酸途径与斑蝥素合成相关性的基础。本研究利用RACE技术从细纹豆芫菁Epicauta mannerheimi(Mklin)体内克隆获得HMGR基因全长cDNA序列,命名为EmHMGR(GenBank登录号为JQ690539)。该基因全长3118bp,其中5'端非翻译区178bp,3'端非翻译区414bp,开放阅读框2526bp,编码842个氨基酸。推测的蛋白质分子量为92.8kDa,理论等电点为6.0,预测分子式为C4135H6604N1098O1216S50,不稳定系数为43.37,总亲水性系数为0.091,为疏水性不稳定蛋白。序列分析发现该基因编码的蛋白与已报道的其他昆虫HMGR的氨基酸序列一致性达50%以上,而且包含HMGR_Class I保守功能域、固醇敏感多肽区及HMGR蛋白的其他保守功能位点。系统进化分析发现该基因与叶甲科昆虫HMGR基因的关系最近。本研究首次从芫菁科昆虫体内克隆获得甲羟戊酸途径的关键酶EmHMGR基因,为后期芫菁体内斑蝥素生物合成途径的研究奠定了基础。展开更多
Cholesterol plays several structural and metabolic roles that are vital for human biology. It spreads along the entire plasma membrane of the cell, modulating fluidity and concentrating in specialized sphingolipid-ric...Cholesterol plays several structural and metabolic roles that are vital for human biology. It spreads along the entire plasma membrane of the cell, modulating fluidity and concentrating in specialized sphingolipid-rich domains called rafts and caveolae. Cholesterol is also a substrate for steroid hormones. However, too much cholesterol can lead to pathological pictures such as atherosclerosis, which is a consequence of the accumu- lation of cholesterol into the cells of the artery wall. The liver is considered to be the metabolic power station of mammalians, where cholesterol homeostasis relies on an intricate network of cellular processes whose deregulations can lead to several life-threatening pathologies, such as familial and age-related hypercholesterolemia. Cholesterol homeostasis maintenance is carried out by: biosynthesis, via 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) activity; uptake, through low density lipoprotein receptors (LDLr); lipoprotein release in the blood; storage by esterification; and degradation and conversion into bile acids. Both HMGR and LDLr are transcribed as a function of cellular sterol amount by a family of transcription factors called sterol regulatory element binding proteins that are responsible for the maintenance of cholesterol homeostasis through an intricate mechanism of regulation. Cholesterol obtained by hepatic de novo synthesis can be esterified and incorporated into apolipoprotein B-100-containing very low density lipoproteins, which are then secreted into the bloodstream for transport to peripheral tissues. Moreover, dietary cholesterol is transferred from the intestine to the liver by high density lipoproteins (HDLs); all HDL particles are internalized in the liver, interacting with the hepatic scavenger receptor (SR-B1). Here we provide an updated overview of liver cholesterol metabolism regulation and deregulation and the causes of cholesterol metabolism-related diseases. Moreover, current pharmacological treatment and novel hypocho-lesterolemic strategies will also be introduced.展开更多
AIM: To compare hepatitis C virus (HCV) titers in patients with chronic hepatitis C with and without exposure to 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins).METHODS: Medical records were revie...AIM: To compare hepatitis C virus (HCV) titers in patients with chronic hepatitis C with and without exposure to 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins).METHODS: Medical records were reviewed for 6463 patients with documented HCV infection at a single center between March 2004 and September 2006. Patients with confi rmed viremia and meeting inclusion criteria were assigned to one of three groups: Group A (n = 50), dyslipidemic patients with statin usage during HCV RNA polymerase chain reaction (PCR) determination; Group B (n = 49), dyslipidemic patients with prior or future statin usage but not at the time of HCV RNA PCR determination; and Group C (n = 102), patients without statin usage during the study period. The primary analysis explored the effect of statin therapy on HCV viremia. Secondary analyses assessed class effect, dose response, and effect of other lipid-lowering therapies on HCV viral titers.RESULTS: Median HCV RNA titers did not signif icantly differ among the three groups (Group A: 4 550 000 IU/mL, Group B: 2 850 000 IU/mL, Group C: 3 055 000 IU/mL).For those subjects with longitudinal assessment of HCV viremia prior to and while on statins, there were no signif icant differences between pre- and post-HCV viral titers. Additionally, no differences in HCV titers were observed at any dose level of the most prescribed statin, simvastatin. However, hypertriglyceridemia independently correlated with HCV titers, and niacin exposure was associated with signif icantly lower viral titers (P < 0.05).CONCLUSION: There was no apparent effect of statins on HCV viral replication in this analysis. Further investigation is warranted to explore the possible antiviral properties of triglyceride-lowering agents and their potential role as adjuncts to standard HCV therapy.展开更多
Paris polyphylla var.yunnanensis is a traditional Chinese medicinal plant,in which polyphyllin as the main medicinal component is an important secondary metabolite with bioactivity.Arbuscular mycorrhizal fungi(AMF)hav...Paris polyphylla var.yunnanensis is a traditional Chinese medicinal plant,in which polyphyllin as the main medicinal component is an important secondary metabolite with bioactivity.Arbuscular mycorrhizal fungi(AMF)have multiple positive effects on plants,while it is not clear whether AMF increase the content of medicinal components in medicinal plants.In this study,a total of nine AMF treatments were laid to analyze the mycorrhizal effect on polyphyllin accumulation and PpHMGR and PpSE expression of P.polyphylla var.yunnanensis.AMF increased the content of polyphyllin in the cultivated variety with low relation to the increase of inoculation intensity.Polyphyllin I,II,and VII were identified and partly improved by AMF inoculation,dependent on AMF treatments and culture environments.Similarly,the PpHMGR and PpSE expression was induced by mycorrhization,dependent on AMF species,whilst the induction was more obvious in PpSE than in PpHMGR after mycorrhization.It concluded that the symbiotic relationship between P.polyphylla var.yunnanensis and AMF increased polyphyllin content level in the plant,which was associated with the up-regulation of PpSE transcripts.展开更多
BACKGROUND Immune-mediated necrotizing myopathy is a rare autoimmune myopathy characterized by muscle weakness and elevated serum creatine kinase,with unique skeletal muscle pathology and magnetic resonance imaging fe...BACKGROUND Immune-mediated necrotizing myopathy is a rare autoimmune myopathy characterized by muscle weakness and elevated serum creatine kinase,with unique skeletal muscle pathology and magnetic resonance imaging features.CASE SUMMARY In this paper,two patients are reported:One was positive for anti-signal recognition particle antibody,and the other was positive for anti-3-hydroxy-3-methylglutaryl coenzyme A reductase antibody.CONCLUSION The clinical characteristics and treatment of the two patients were analysed,and the literature was reviewed to improve the recognition,diagnosis,and treatment of this disease.展开更多
文摘Cholesterol plays several structural and metabolic roles that are vital for human biology. It spreads along the entire plasma membrane of the cell, modulating fluidity and concentrating in specialized sphingolipid-rich domains called rafts and caveolae. Cholesterol is also a substrate for steroid hormones. However, too much cholesterol can lead to pathological pictures such as atherosclerosis, which is a consequence of the accumu- lation of cholesterol into the cells of the artery wall. The liver is considered to be the metabolic power station of mammalians, where cholesterol homeostasis relies on an intricate network of cellular processes whose deregulations can lead to several life-threatening pathologies, such as familial and age-related hypercholesterolemia. Cholesterol homeostasis maintenance is carried out by: biosynthesis, via 3-hydroxy-3-methylglutaryl coenzyme A reductase (HMGR) activity; uptake, through low density lipoprotein receptors (LDLr); lipoprotein release in the blood; storage by esterification; and degradation and conversion into bile acids. Both HMGR and LDLr are transcribed as a function of cellular sterol amount by a family of transcription factors called sterol regulatory element binding proteins that are responsible for the maintenance of cholesterol homeostasis through an intricate mechanism of regulation. Cholesterol obtained by hepatic de novo synthesis can be esterified and incorporated into apolipoprotein B-100-containing very low density lipoproteins, which are then secreted into the bloodstream for transport to peripheral tissues. Moreover, dietary cholesterol is transferred from the intestine to the liver by high density lipoproteins (HDLs); all HDL particles are internalized in the liver, interacting with the hepatic scavenger receptor (SR-B1). Here we provide an updated overview of liver cholesterol metabolism regulation and deregulation and the causes of cholesterol metabolism-related diseases. Moreover, current pharmacological treatment and novel hypocho-lesterolemic strategies will also be introduced.
基金Supported by The Veterans Health Administration Research Career Development Award (DEK)
文摘AIM: To compare hepatitis C virus (HCV) titers in patients with chronic hepatitis C with and without exposure to 3-hydroxy-3-methylglutaryl coenzyme A reductase inhibitors (statins).METHODS: Medical records were reviewed for 6463 patients with documented HCV infection at a single center between March 2004 and September 2006. Patients with confi rmed viremia and meeting inclusion criteria were assigned to one of three groups: Group A (n = 50), dyslipidemic patients with statin usage during HCV RNA polymerase chain reaction (PCR) determination; Group B (n = 49), dyslipidemic patients with prior or future statin usage but not at the time of HCV RNA PCR determination; and Group C (n = 102), patients without statin usage during the study period. The primary analysis explored the effect of statin therapy on HCV viremia. Secondary analyses assessed class effect, dose response, and effect of other lipid-lowering therapies on HCV viral titers.RESULTS: Median HCV RNA titers did not signif icantly differ among the three groups (Group A: 4 550 000 IU/mL, Group B: 2 850 000 IU/mL, Group C: 3 055 000 IU/mL).For those subjects with longitudinal assessment of HCV viremia prior to and while on statins, there were no signif icant differences between pre- and post-HCV viral titers. Additionally, no differences in HCV titers were observed at any dose level of the most prescribed statin, simvastatin. However, hypertriglyceridemia independently correlated with HCV titers, and niacin exposure was associated with signif icantly lower viral titers (P < 0.05).CONCLUSION: There was no apparent effect of statins on HCV viral replication in this analysis. Further investigation is warranted to explore the possible antiviral properties of triglyceride-lowering agents and their potential role as adjuncts to standard HCV therapy.
基金supported by the National Natural Science Foundation of China(No.81260622)Chongqing Natural Science Foundation Project(cstc2018jcyjAX0267).
文摘Paris polyphylla var.yunnanensis is a traditional Chinese medicinal plant,in which polyphyllin as the main medicinal component is an important secondary metabolite with bioactivity.Arbuscular mycorrhizal fungi(AMF)have multiple positive effects on plants,while it is not clear whether AMF increase the content of medicinal components in medicinal plants.In this study,a total of nine AMF treatments were laid to analyze the mycorrhizal effect on polyphyllin accumulation and PpHMGR and PpSE expression of P.polyphylla var.yunnanensis.AMF increased the content of polyphyllin in the cultivated variety with low relation to the increase of inoculation intensity.Polyphyllin I,II,and VII were identified and partly improved by AMF inoculation,dependent on AMF treatments and culture environments.Similarly,the PpHMGR and PpSE expression was induced by mycorrhization,dependent on AMF species,whilst the induction was more obvious in PpSE than in PpHMGR after mycorrhization.It concluded that the symbiotic relationship between P.polyphylla var.yunnanensis and AMF increased polyphyllin content level in the plant,which was associated with the up-regulation of PpSE transcripts.
文摘BACKGROUND Immune-mediated necrotizing myopathy is a rare autoimmune myopathy characterized by muscle weakness and elevated serum creatine kinase,with unique skeletal muscle pathology and magnetic resonance imaging features.CASE SUMMARY In this paper,two patients are reported:One was positive for anti-signal recognition particle antibody,and the other was positive for anti-3-hydroxy-3-methylglutaryl coenzyme A reductase antibody.CONCLUSION The clinical characteristics and treatment of the two patients were analysed,and the literature was reviewed to improve the recognition,diagnosis,and treatment of this disease.