期刊文献+
共找到62,336篇文章
< 1 2 250 >
每页显示 20 50 100
Cholesterol metabolism: physiological versus pathological aspects in intracerebral hemorrhage 被引量:1
1
作者 Ruoyu Huang Qiuyu Pang +4 位作者 Lexin Zheng Jiaxi Lin Hanxi Li Lingbo Wan Tao Wang 《Neural Regeneration Research》 SCIE CAS 2025年第4期1015-1030,共16页
Cholesterol is an important component of plasma membranes and participates in many basic life functions,such as the maintenance of cell membrane stability,the synthesis of steroid hormones,and myelination.Cholesterol ... Cholesterol is an important component of plasma membranes and participates in many basic life functions,such as the maintenance of cell membrane stability,the synthesis of steroid hormones,and myelination.Cholesterol plays a key role in the establishment and maintenance of the central nervous system.The brain contains 20%of the whole body’s cholesterol,80%of which is located within myelin.A huge number of processes(e.g.,the sterol regulatory element-binding protein pathway and liver X receptor pathway)participate in the regulation of cholesterol metabolism in the brain via mechanisms that include cholesterol biosynthesis,intracellular transport,and efflux.Certain brain injuries or diseases involving crosstalk among the processes above can affect normal cholesterol metabolism to induce detrimental consequences.Therefore,we hypothesized that cholesterol-related molecules and pathways can serve as therapeutic targets for central nervous system diseases.Intracerebral hemorrhage is the most severe hemorrhagic stroke subtype,with high mortality and morbidity.Historical cholesterol levels are associated with the risk of intracerebral hemorrhage.Moreover,secondary pathological changes after intracerebral hemorrhage are associated with cholesterol metabolism dysregulation,such as neuroinflammation,demyelination,and multiple types of programmed cell death.Intracellular cholesterol accumulation in the brain has been found after intracerebral hemorrhage.In this paper,we review normal cholesterol metabolism in the central nervous system,the mechanisms known to participate in the disturbance of cholesterol metabolism after intracerebral hemorrhage,and the links between cholesterol metabolism and cell death.We also review several possible and constructive therapeutic targets identified based on cholesterol metabolism to provide cholesterol-based perspectives and a reference for those interested in the treatment of intracerebral hemorrhage. 展开更多
关键词 cell death cholesterol metabolism intracerebral hemorrhage MYELINATION therapeutic target
在线阅读 下载PDF
Corrigendum: Astrocytic endothelin-1 overexpression impairs learning and memory ability in ischemic stroke via altered hippocampal neurogenesis and lipid metabolism
2
《Neural Regeneration Research》 SCIE CAS 2025年第2期401-401,共1页
In the article titled“Astrocytic endothelin-1 overexpression impairs learning and memory ability in ischemic stroke via altered hippocampal neurogenesis and lipid metabolism,”published on pages 650-656,Issue 3,Volum... In the article titled“Astrocytic endothelin-1 overexpression impairs learning and memory ability in ischemic stroke via altered hippocampal neurogenesis and lipid metabolism,”published on pages 650-656,Issue 3,Volume 19 of Neural Regeneration Research(Li et al.,2024),there were two errors that needed to be corrected. 展开更多
关键词 metabolism ENDOTHELIN
在线阅读 下载PDF
Pyrroloquinoline quinone:a potential neuroprotective compound for neurodegenerative diseases targeting metabolism
3
作者 Alessio Canovai Pete A.Williams 《Neural Regeneration Research》 SCIE CAS 2025年第1期41-53,共13页
Pyrroloquinoline quinone is a quinone described as a cofactor for many bacterial dehydrogenases and is reported to exert an effect on metabolism in mammalian cells/tissues.Pyrroloquinoline quinone is present in the di... Pyrroloquinoline quinone is a quinone described as a cofactor for many bacterial dehydrogenases and is reported to exert an effect on metabolism in mammalian cells/tissues.Pyrroloquinoline quinone is present in the diet being available in foodstuffs,conferring the potential of this compound to be supplemented by dietary administration.Pyrroloquinoline quinone’s nutritional role in mammalian health is supported by the extensive deficits in reproduction,growth,and immunity resulting from the dietary absence of pyrroloquinoline quinone,and as such,pyrroloquinoline quinone has been considered as a“new vitamin.”Although the classification of pyrroloquinoline quinone as a vitamin needs to be properly established,the wide range of benefits for health provided has been reported in many studies.In this respect,pyrroloquinoline quinone seems to be particularly involved in regulating cell signaling pathways that promote metabolic and mitochondrial processes in many experimental contexts,thus dictating the rationale to consider pyrroloquinoline quinone as a vital compound for mammalian life.Through the regulation of different metabolic mechanisms,pyrroloquinoline quinone may improve clinical deficits where dysfunctional metabolism and mitochondrial activity contribute to induce cell damage and death.Pyrroloquinoline quinone has been demonstrated to have neuroprotective properties in different experimental models of neurodegeneration,although the link between pyrroloquinoline quinone-promoted metabolism and improved neuronal viability in some of such contexts is still to be fully elucidated.Here,we review the general properties of pyrroloquinoline quinone and its capacity to modulate metabolic and mitochondrial mechanisms in physiological contexts.In addition,we analyze the neuroprotective properties of pyrroloquinoline quinone in different neurodegenerative conditions and consider future perspectives for pyrroloquinoline quinone’s potential in health and disease. 展开更多
关键词 metabolism MITOCHONDRIA neurodegenerative disease NEUROPROTECTION pyrroloquinoline quinone retinal diseases
在线阅读 下载PDF
Risk factors for developing osteoporosis in diabetic kidney disease and its correlation with calcium-phosphorus metabolism,FGF23,and Klotho
4
作者 Fan Yang Yan Wu Wei Zhang 《World Journal of Diabetes》 SCIE 2025年第1期49-57,共9页
BACKGROUND The progression of diabetic kidney disease(DKD)affects the patient’s kidney glomeruli and tubules,whose normal functioning is essential for maintaining normal calcium(Ca)and phosphorus(P)metabolism in the ... BACKGROUND The progression of diabetic kidney disease(DKD)affects the patient’s kidney glomeruli and tubules,whose normal functioning is essential for maintaining normal calcium(Ca)and phosphorus(P)metabolism in the body.The risk of developing osteoporosis(OP)in patients with DKD increases with the aggravation of the disease,including a higher risk of fractures,which not only affects the quality of life of patients but also increases the risk of death.AIM To analyze the risk factors for the development of OP in patients with DKD and their correlation with Ca-P metabolic indices,fibroblast growth factor 23(FGF23),and Klotho.METHODS One hundred and fifty-eight patients with DKD who were admitted into the Wuhu Second People’s Hospital from September 2019 to May 2021 were selected and divided into an OP group(n=103)and a normal bone mass group(n=55)according to their X-ray bone densitometry results.Baseline data and differences in Ca-P biochemical indices,FGF23,and Klotho were compared.The correlation of Ca-P metabolic indices with FGF23 and Klotho was discussed,and the related factors affecting OP in patients with DKD were examined by multivariate logistic regression analysis.RESULTS The OP group had a higher proportion of females,an older age,and a longer diabetes mellitus duration than the normal group(all P<0.05).Patients in the OP group exhibited significantly higher levels of intact parathyroid hormone(iPTH),blood P,Ca-P product(Ca×P),fractional excretion of phosphate(FeP),and FGF23,as well as lower estimated glomerular filtration rate,blood Ca,24-hour urinary phosphate excretion(24-hour UPE),and Klotho levels(all P<0.05).In the OP group,25-(OH)-D3,blood Ca,and 24-hour UPE were negatively correlated with FGF23 and positively correlated with Klotho.In contrast,iPTH,blood Ca,Ca×P,and FeP exhibited a positive correlation with FGF23 and an inverse association with Klotho(all P<0.05).Moreover,25-(OH)-D3,iPTH,blood Ca,FePO4,FGF23,Klotho,age,and female gender were key factors that affected the lumbar and left femoral neck bone mineral density.CONCLUSION The Ca-P metabolism metabolic indexes,FGF23,and Klotho in patients with DKD are closely related to the occurrence and development of OP. 展开更多
关键词 Diabetic kidney disease OSTEOPOROSIS Calcium-phosphorus metabolism FGF23 KLOTHO
在线阅读 下载PDF
Effect of cholesterol metabolism on hepatolithiasis
5
作者 Lin Zheng Zi-Yu Ye Jun-Ji Ma 《World Journal of Gastroenterology》 SCIE CAS 2025年第1期157-162,共6页
Surgical intervention is currently the primary treatment for hepatolithiasis;how-ever,some patients still experience residual stones and high recurrence rates after surgery.Cholesterol metabolism seems to play an impo... Surgical intervention is currently the primary treatment for hepatolithiasis;how-ever,some patients still experience residual stones and high recurrence rates after surgery.Cholesterol metabolism seems to play an important role in hepatoli-thiasis pathogenesis.A high cholesterol diet is one of the significant reasons for the increasing incidence of hepatolithiasis.Therefore,regular diet and appropriate medical intervention are crucial measures to prevent hepatolithiasis and reduce recurrence rate after surgery.Reducing dietary cholesterol and drugs that increase cholesterol stone solubility are key therapeutic approaches in treating hepato-lithiasis.This article discusses the cholesterol metabolic pathways related to the pathogenesis of hepatolithiasis,as well as food intake and targeted therapeutic drugs. 展开更多
关键词 HEPATOLITHIASIS Cholesterol metabolism High-fat diet 3-hydroxy-3-methylglutaryl-coenzyme A reductase Interlobular bile duct
在线阅读 下载PDF
Targeting sepsis through inflammation and oxidative metabolism
6
作者 Salena Jacob Sanjana Ann Jacob Joby Thoppil 《World Journal of Critical Care Medicine》 2025年第1期69-81,共13页
Infection is a public health problem and represents a spectrum of disease that can result in sepsis and septic shock.Sepsis is characterized by a dysregulated immune response to infection.Septic shock is the most seve... Infection is a public health problem and represents a spectrum of disease that can result in sepsis and septic shock.Sepsis is characterized by a dysregulated immune response to infection.Septic shock is the most severe form of sepsis which leads to distributive shock and high mortality rates.There have been significant advances in sepsis management mainly focusing on early identification and therapy.However,complicating matters is the lack of reliable diagnostic tools and the poor specificity and sensitivity of existing scoring tools i.e.,systemic inflammatory response syndrome criteria,sequential organ failure assessment(SOFA),or quick SOFA.These limitations have underscored the modest progress in reducing sepsis-related mortality.This review will focus on novel therapeutics such as oxidative stress targets,cytokine modulation,endothelial cell modulation,etc.,that are being conceptualized for the management of sepsis and septic shock. 展开更多
关键词 SEPSIS INFLAMMATION Oxidative metabolism INFECTION Reactive oxygen species
在线阅读 下载PDF
Progress in the Regulation of Lipid Metabolism by the Orphan Nuclear Receptor Nur77
7
作者 Hongjie He Xiaohong Cen +3 位作者 Yejin Liang Jinmei Zhong Junhua Deng Yujie Jiang 《Journal of Biosciences and Medicines》 2025年第1期163-172,共10页
Neuron-derived clone 77 (Nur77) is a member of the NR4A subfamily that plays critical roles in apoptosis, survival, proliferation, autophagy, angiogenesis, inflammatory responses, DNA repair, glycolipid metabolism and... Neuron-derived clone 77 (Nur77) is a member of the NR4A subfamily that plays critical roles in apoptosis, survival, proliferation, autophagy, angiogenesis, inflammatory responses, DNA repair, glycolipid metabolism and energy consumption. The deregulation of Nur77 signalling often relates to various serious diseases, including cancer and non-cancer diseases. A systematic review is necessary for the better understanding of Nur77 in clinical treatment. In this article, we comprehensively conclude the lipid regulation function and expression of Nur77, and its role in COPD. Finally, we prospect that development of drugs and clinical biochemical investigations targeting of Nur77 has considerable potential within healthcare. 展开更多
关键词 Orphan Nuclear Receptor Nur77 NR4A1 Lipid metabolism COPD
在线阅读 下载PDF
Liver as a new target organ in Alzheimer's disease:insight from cholesterol metabolism and its role in amyloid-beta clearance
8
作者 Beibei Wu Yuqing Liu +4 位作者 Hongli Li Lemei Zhu Lingfeng Zeng Zhen Zhang Weijun Peng 《Neural Regeneration Research》 SCIE CAS 2025年第3期695-714,共20页
Alzheimer's disease,the primary cause of dementia,is characterized by neuropathologies,such as amyloid plaques,synaptic and neuronal degeneration,and neurofibrillary tangles.Although amyloid plaques are the primar... Alzheimer's disease,the primary cause of dementia,is characterized by neuropathologies,such as amyloid plaques,synaptic and neuronal degeneration,and neurofibrillary tangles.Although amyloid plaques are the primary characteristic of Alzheimer's disease in the central nervous system and peripheral organs,targeting amyloid-beta clearance in the central nervous system has shown limited clinical efficacy in Alzheimer's disease treatment.Metabolic abnormalities are commonly observed in patients with Alzheimer's disease.The liver is the primary peripheral organ involved in amyloid-beta metabolism,playing a crucial role in the pathophysiology of Alzheimer's disease.Notably,impaired cholesterol metabolism in the liver may exacerbate the development of Alzheimer's disease.In this review,we explore the underlying causes of Alzheimer's disease and elucidate the role of the liver in amyloid-beta clearance and cholesterol metabolism.Furthermore,we propose that restoring normal cholesterol metabolism in the liver could represent a promising therapeutic strategy for addressing Alzheimer's disease. 展开更多
关键词 ABCA1 Alzheimer's disease AMYLOID-BETA apolipoprotein E cholesterol metabolism LIVER liver X receptor low-density lipoprotein receptor-related protein 1 peripheral clearance tauroursodeoxycholic acid
在线阅读 下载PDF
Longitudinal assessment of peripheral organ metabolism and the gut microbiota in an APP/PS1 transgenic mouse model of Alzheimer’s disease
9
作者 Hongli Li Jianhua Huang +4 位作者 Di Zhao Lemei Zhu Zheyu Zhang Min Yi Weijun Peng 《Neural Regeneration Research》 SCIE CAS 2025年第10期2982-2997,共16页
Alzheimer’s disease not only affects the brain,but also induces metabolic dysfunction in peripheral organs and alters the gut microbiota.The aim of this study was to investigate systemic changes that occur in Alzhei... Alzheimer’s disease not only affects the brain,but also induces metabolic dysfunction in peripheral organs and alters the gut microbiota.The aim of this study was to investigate systemic changes that occur in Alzheimer’s disease,in particular the association between changes in peripheral organ metabolism,changes in gut microbial composition,and Alzheimer’s disease development.To do this,we analyzed peripheral organ metabolism and the gut microbiota in amyloid precursor protein-presenilin 1(APP/PS1)transgenic and control mice at 3,6,9,and 12 months of age.Twelve-month-old APP/PS1 mice exhibited cognitive impairment,Alzheimer’s disease-related brain changes,distinctive metabolic disturbances in peripheral organs and fecal samples(as detected by untargeted metabolomics sequencing),and substantial changes in gut microbial composition compared with younger APP/PS1 mice.Notably,a strong correlation emerged between the gut microbiota and kidney metabolism in APP/PS1 mice.These findings suggest that alterations in peripheral organ metabolism and the gut microbiota are closely related to Alzheimer’s disease development,indicating potential new directions for therapeutic strategies. 展开更多
关键词 Alzheimer’s disease APP/PS1 mice brain-kidney axis gut microbiota heart-brain axis liver-brain axis lung-brain axis microbiota-gut-brain axis peripheral organ metabolism spleen-brain axis
在线阅读 下载PDF
The N-terminal domain of gasdermin D induces liver fibrosis by reprogrammed lipid metabolism
10
作者 Xue Wang Chunyou Ning +8 位作者 Xingyi Cheng Zhengzhong Wu Dongbo Wu Xuemei Ding Cunxiang Ju Zhihang Zhou Lingfeng Wan Wei Zhao Peiliang Shi 《Animal Models and Experimental Medicine》 2025年第1期114-125,共12页
Background:The emerging incidence of pathogenic liver conditions is turning into a major concern for global health.Induction of pyroptosis in hepatocytes instigates cel-lular disintegration,which in turn liberates sub... Background:The emerging incidence of pathogenic liver conditions is turning into a major concern for global health.Induction of pyroptosis in hepatocytes instigates cel-lular disintegration,which in turn liberates substantial quantities of pro-inflammatory intracellular substances,thereby accelerating the advancement of liver fibrosis.Consequently,directing therapeutic efforts towards inhibiting pyroptosis could po-tentially serve as an innovative approach in managing inflammation related chronic hepatic disorders.Methods:GSDMD-NT^(ki/wt)mice and Alb-cre^(ki/wt)mice were generated using CRISPR/Cas9 technology.After crossing the two strains together,we induced conditional cell death by doxycycline to construct a mouse model of liver fibrosis.We analyzed differ-entially expressed genes by RNA sequencing and explored their biological functions.The efficacy of obeticholic acid(OCA)in the treatment of liver fibrosis was assessed.Results:Doxycycline-treated GSDMD-NT^(ki/wt)×Alb-cre^(ki/wt)mice showed severe liver damage,vacuolation of hepatocytes,increased collagen fibers,and accumulation of lipid droplets.The expression of liver fibrosis related genes was greatly increased in the doxycycline-treated mouse liver compared with untreated mouse liver.RNA-sequencing showed that upregulated differentially expressed genes were involved in inflammatory responses,cell activation,and metabolic processes.Treatment with OCA alleviated the liver fibrosis,with reduced ALT and AST levels seen in the GSDMD-NT^(ki/wt)×Alb-cre^(ki/wt)mice.Conclusions:We successfully constructed a novel mouse model for liver fibrosis.This GSDMD-NT-induced fibrosis may be mediated by abnormal lipid metabolism.Our re-sults demonstrated that we successfully constructed a mouse model of liver fibrosis,and GSDMD-NT induced fibrosis by mediating lipid metabolism. 展开更多
关键词 GSDMD-NT lipid metabolism liver fibrosis NASH PYROPTOSIS
在线阅读 下载PDF
Pu-erh tea partly improved liver cholesterol metabolism disorders in colitis mice via the gut-liver axis
11
作者 Shanshan Hu Zhiyuan Lin +3 位作者 Sibo Zhao Bowen Zhang Liyong Luo Liang Zeng 《Food Science and Human Wellness》 2025年第2期706-718,共13页
Pu-erh tea has been shown to reduce gut inflammation in dextran sulfate sodium(DSS)-induced mice.Also,we found abnormal liver cholesterol metabolism in DSS-induced mice.However,it's not clear how Pu-erh tea improv... Pu-erh tea has been shown to reduce gut inflammation in dextran sulfate sodium(DSS)-induced mice.Also,we found abnormal liver cholesterol metabolism in DSS-induced mice.However,it's not clear how Pu-erh tea improves DSS-induced impaired liver cholesterol metabolism.Here,we established the DSS-induced model and clarified that DSS exacerbated gut inflammation accompanied by disorders of liver cholesterol metabolism.Pu-erh tea reshaped gut microbes,limited gut oxidative stress and inflammation(nicotinamide adenine dinucleotide phosphate oxidase 2/reactive oxygen species/myeloid differentiation primary response protein 88/nuclear factor kappa-B,24.97%-52.89%),reduced gut bile acid reabsorption(up-regulation of farnesoid X receptor(FXR)/fibroblast growth factor 15,24.53%-55.91%),and promoted liver bile acid synthesis(up-regulation of peroxisome proliferator-activated receptor-α/cholesterol 7-alpha hydroxylase,34.65%-79.14%),thereby partly restoring liver cholesterol metabolism(regulated FXR/small heterodimer partner/sterol-regulatory element binding proteins,53.19%-95.40%).Altered bile acid metabolic profiles(increased chenodeoxycholic acid,ursodeoxycholic acid,lithocholic acid,etc.)may also improve liver cholesterol metabolism by altering gut and liver inflammation.Thus,gut microbial reshaping and altered bile acid metabolism may be key targets of Pu-erh tea for improving DSS-induced liver cholesterol metabolism disorders via the gut-gut microbe-bile acid-liver axis. 展开更多
关键词 Pu-erh tea Dextran sulfate sodium(DSS)-induced colitis Liver cholesterol metabolism disorders Bile acid metabolism Gut microbes
在线阅读 下载PDF
Calycosin improves atherosclerosis by reshaping the interaction between the gut microbiome and bile acid metabolism
12
作者 Jiaqi Fu Donghua Yu +6 位作者 Yuqin Liang Xin Gao Yunhe Shi Yu Wang Pingping Chen Fang Lu Shumin Liu 《Food Science and Human Wellness》 2025年第4期1369-1386,共18页
Calycosin,Astragali Radix most prominent ingredient,has drawn more attention as a result of its ability to treat atherosclerosis(AS).However,the mechanism of action has not been fully elucidated.We investigated the ef... Calycosin,Astragali Radix most prominent ingredient,has drawn more attention as a result of its ability to treat atherosclerosis(AS).However,the mechanism of action has not been fully elucidated.We investigated the effects of calycosin on bile acid(BA)metabolism and gut microbiome in ApoE^(-/-)mice fed a high-fat diet(HFD).The data showed that the aorta of ApoE^(-/-)mice treated with HFD showed significant atheromatous plaque formation and lipid accumulation,and the levels of total cholesterol(TC),triglycerides(TG)and low-density lipoprotein cholesterol(LDL-C)were significantly increased,while the levels of high-density lipoprotein cholesterol(HDL-C)were significantly decreased.Calycosin can substantially regulate lipid levels,thereby alleviating liver lipid deposition induced by atherosclerosis.In addition,16S rRNA sequencing showed that calycosin treatment has reshaped the gut microbiota disturbed by HFD,in particular,increasing the ratio of Bacteroidetes/Firmicutes,and improving the relative abundance of Bilophila,Desulfovibrio,Bacteroides,Lactobacillus,etc.Meanwhile,targeted metabolomics analysis showed that calycosin treatment significantly modulated glycodeoxycholic acid(CDCA),taurocholic acids(TCA),lithocholic acid(LCA),deoxycholic acid(DCA),taurodeoxycholic acid(TDCA)and BA pool composition,which were associated with atherosclerotic plaque areas.In addition,calycosin treatment also down-regulated farnesoid X receptor(FXR)protein levels and up-regulated cytochrome P450 family 7 subfamily A member 1(CYP7A1)protein levels in the hepatic.At the same time,calycosin inhibits the ileum FXR/TGR5 signaling pathway,inhibits BA reabsorption,promotes BA excretion,and reduces hepatic cholesterol accumulation by enterohepatic circulation.In addition,we found that calycosin significantly promoted the expression of hepatic ATP-binding cassette transporter A1(ABCA1)and ABCG1 to mediate cholesterol efflux.Meanwhile,calycosin regulates gut microbiota,and Bacteroides,Alistipes,Desulfovibrio,Lactobacillus,Bilophila and Odoribacter are closely related to specific BAs.This enables us to further understand the relationship between BA metabolism and gut microbiota.Calycosin may reduce high-fat diet-induced hepatic cholesterol accumulation in ApoE^(-/-)mice through gut microbiota and BA metabolism,and play a role in treating AS.Finally,we confirmed that calycosin-altered gut microbiota by fecal microbiota transplantation was sufficient to alleviate atherosclerosis.Taken together,our findings provide important insights into the pharmacological mechanisms underlying the efficacy of calycosin on atherosclerosis. 展开更多
关键词 CALYCOSIN Atherosderosis Bile acid metabolism Gut microbiota
在线阅读 下载PDF
Sea cucumber derived sulfated sterols alter glucose metabolism by promoting gluconeogenesis and reducing glycogenesis in healthy mice
13
作者 Shanyun Yu Teng Wang +4 位作者 Yingcai Zhao Xiaoyue Li Changhu Xue Yuming Wang Tiantian Zhang 《Food Science and Human Wellness》 2025年第2期719-728,共10页
Sea cucumber derived sulfated sterols significantly ameliorated insulin resistance and decreased lipid accumulation compared to plant sterols.Interestingly,our recent study found that intervention with sea cucumber su... Sea cucumber derived sulfated sterols significantly ameliorated insulin resistance and decreased lipid accumulation compared to plant sterols.Interestingly,our recent study found that intervention with sea cucumber sulfated sterols could significantly increase blood glucose levels of healthy mice in the presence of glucose,while cholesterol sulfate,as one of sulfated sterols,did not have the same effect.However,the exact mechanism of sulfated sterols on glucose metabolism is still unknown.In the present study,we investigated the potential mechanism by which sulfated sterols influenced blood glucose homeostasis in healthy mice.Results showed that intervention with sea cucumber sulfated sterols did not affect the levels of hormones related to glucose metabolism,while led to a significant decrease in the synthesis of liver glycogen and muscle glycogen.Besides,the expression of proteins associated with the promotion of gluconeogenesis dramatically increased in the mice intervened with sea cucumber sulfated sterols.These findings suggested that sea cucumber sulfated sterols might change blood glucose metabolism in healthy mice by reducing glycogenesis and promoting gluconeogenesis. 展开更多
关键词 Sea cucumber Sulfated sterols Cholesterol sulfate Blood glucose metabolism
在线阅读 下载PDF
Early‑life milk replacer feeding mediates lipid metabolism disorders induced by colonic microbiota and bile acid profiles to reduce body weight in goat model
14
作者 Ke Zhang Ting Zhang +9 位作者 Mengmeng Guo Awang Cuoji Yangbin Xu Yitong Zhao Yuxin Yang Daniel Brugger Xiaolong Wang Langda Suo Yujiang Wu Yulin Chen 《Journal of Animal Science and Biotechnology》 2025年第1期300-315,共16页
Background Dysregulation of lipid metabolism and its consequences on growth performance in young ruminants have attracted attention,especially in the context of alternative feeding strategies.This study aims to elucid... Background Dysregulation of lipid metabolism and its consequences on growth performance in young ruminants have attracted attention,especially in the context of alternative feeding strategies.This study aims to elucidate the effects of milk replacer(MR)feeding on growth,lipid metabolism,colonic epithelial gene expression,colonic microbiota composition and systemic metabolism in goat kids compared to breast milk(BM)feeding,addressing a critical knowledge gap in early life nutrition.Methods Ten female goat kids were divided into 2 groups:those fed breast milk(BM group)and those fed a milk replacer(MR group).Over a period of 28 d,body weight was monitored and blood and tissue samples were collected for biochemical,transcriptomic and metabolomic analyses.Profiling of the colonial microbiota was performed using 16S rRNA gene sequencing.Intestinal microbiota transplantation(IMT)experiments in gnotobiotic mice were per-formed to validate causality.Results MR-fed pups exhibited reduced daily body-weight gain due to impaired lipid metabolism as evidenced by lower serum and liver total cholesterol(TC)and non-esterified fatty acid(NEFA)concentrations.Transcriptomic analysis of the colonic epithelium revealed upregulated genes involved in negative regulation of lipid metabolism,concomitant with microbiota shifts characterized by a decrease in Firmicutes and an increase in Actinobacteria.Specifically,genera such as Bifidobacterium and Prevotella were enriched in the MR group,while Clostridium and Fae-calibacterium were depleted.Metabolomics analyses confirmed alterations in bile acid and fatty acid metabolic path-ways.IMT experiments in mice recapitulated the metabolic phenotype observed in MR-fed goats,confirming the role of the microbiota in modulating host lipid metabolism.Conclusions Milk replacer feeding in goat kids disrupts lipid metabolism and gut microbiota dynamics,result-ing in reduced growth rates and metabolic alterations.These findings highlight the importance of early nutritional intervention on metabolic programming and suggest that modulation of the gut microbiota may be a target for improving growth and metabolic health in ruminants.This study contributes to the understanding of nutritional management strategies in livestock and their impact on animal health and productivity. 展开更多
关键词 Bile acid Colon microbiota Goat model Lipid metabolism Milk replacer
在线阅读 下载PDF
Md CIb HLH1 modulates sugar metabolism and accumulation in apple fruits by coordinating carbohydrate synthesis and allocation
15
作者 Jianqiang Yu Xiaolong Liu +7 位作者 Wenyan Wang Lili Zhang Chukun Wang Quanyan Zhang Jiahui Wang Mengchi Du Lixia Sheng Dagang Hu 《Horticultural Plant Journal》 2025年第2期578-592,共15页
The content of soluble sugars is a vital parameter that indicates the quality of fleshy fruits such as apple(Malus domestica Borkh.).Studying the patterns of accumulation of soluble sugars and regulatory mechanisms as... The content of soluble sugars is a vital parameter that indicates the quality of fleshy fruits such as apple(Malus domestica Borkh.).Studying the patterns of accumulation of soluble sugars and regulatory mechanisms associated with fruit development is crucial for breeding improved fruit varieties.Here,we report that MdCIbHLH1,a low temperature-induced b HLH transcription factor,inhibits the accumulation of soluble sugars by regulating sugar-metabolizing enzyme activities,photosynthetic performance,and the expression of sugar-related genes in developing apple fruits.MdCIbHLH1 inhibits MdFBP and MdPEPCK expression,thus blocking the conversion of acids to sugars in apple fruits.We also discovered that MdCIbHLH1 decreases the photosynthetic rate and carbohydrate accumulation in apple leaves.Our results suggest that soluble sugar accumulation in apple fruits is influenced by multiple factors,including metabolic status,photosynthesis,and carbohydrate allocation.MdCIbHLH1 is critically involved in controlling the accumulation of soluble sugars by coordinating carbohydrate synthesis and allocation,thus influencing sugar transport and its metabolism during the development of apple fruits. 展开更多
关键词 Fruit quality APPLE BHLH Sugar metabolism and transportation Photosynthetic rates
在线阅读 下载PDF
Dietary supplementation with citrus peel extract in transition period improves rumen microbial composition and ameliorates energy metabolism and lactation performance of dairy cows
16
作者 Lingxue Ju Qi Shao +8 位作者 Zhiyuan Fang Erminio Trevisi Meng Chen Yuxiang Song Wenwen Gao Lin Lei Xinwei Li Guowen Liu Xiliang Du 《Journal of Animal Science and Biotechnology》 2025年第1期441-454,共14页
Background During the transition period,excessive negative energy balance(NEB)lead to metabolic disorders and reduced milk yield.Rumen microbes are responsible for resolving plant material and producing volatile fatty... Background During the transition period,excessive negative energy balance(NEB)lead to metabolic disorders and reduced milk yield.Rumen microbes are responsible for resolving plant material and producing volatile fatty acids(VFA),which are the primary energy source for cows.In this study,we aimed to investigate the effect of citrus peel extract(CPE)supplementation on rumen microbiota composition,energy metabolism and milk performance of peri-partum dairy cows.Methods Dairy cows were fed either a basal diet(CON group)or the same basal diet supplemented with CPE via intragastric administration(4 g/d,CPE group)for 6 weeks(3 weeks before and 3 weeks after calving;n=15 per group).Samples of serum,milk,rumen fluid,adipose tissue,and liver were collected to assess the effects of CPE on rumen microbiota composition,rumen fermentation parameters,milk performance,and energy metabolic status of dairy cows.Results CPE supplementation led to an increase in milk yield,milk protein and lactose contents,and serum glucose levels,while reduced serum concentrations of non-esterified fatty acid,β-hydroxybutyric acid,insulin,aspartate aminotransferase,alanine aminotransferase,and haptoglobin during the first month of lactation.CPE supplemen-tation also increased the content of ruminal VFA.Compared to the CON group,the abundance of Prevotellaceae,Methanobacteriaceae,Bacteroidales_RF16_group,and Selenomonadaceae was found increased,while the abun-dance of Oscillospiraceae,F082,Ruminococcaceae,Christensenellaceae,Muribaculaceae UCG-011,Saccharimona-daceae,Hungateiclostridiaceae,and Spirochaetaceae in the CPE group was found decreased.In adipose tissue,CPE supplementation decreased lipolysis,and inflammatory response,while increased insulin sensitivity.In the liver,CPE supplementation decreased lipid accumulation,increased insulin sensitivity,and upregulated expression of genes involved in gluconeogenesis.Conclusions Our findings suggest that CPE supplementation during the peripartum period altered rumen micro-biota composition and increased ruminal VFA contents,which further improved NEB and lactation performance,alleviated lipolysis and inflammatory response in adipose tissue,reduced lipid accumulation and promoted gluconeo-genesis in liver.Thus,CPE might contribute to improve energy metabolism and consequently lactation performance of dairy cows during the transition period. 展开更多
关键词 Adipose tissue Citrus peel extract Energy metabolism LIVER Rumen microbiota
在线阅读 下载PDF
Multi-omics analysis and experimental verification reveal testicular fatty acid metabolism disorder in non-obstructive azoospermia
17
作者 Zhou Li Yi-Jian Xiang +7 位作者 Zhi-Chuan Zou Yu-Ming Feng Hui Wang Wei-Qing Chen Xie Ge Jin-Zhao Ma Jun Jing Bing Yao 《Zoological Research》 2025年第1期177-192,共16页
Increasing evidence implicates disruptions in testicular fatty acid metabolism as a contributing factor in nonobstructive azoospermia(NOA),a severe form of male infertility.However,the precise mechanisms linking fatty... Increasing evidence implicates disruptions in testicular fatty acid metabolism as a contributing factor in nonobstructive azoospermia(NOA),a severe form of male infertility.However,the precise mechanisms linking fatty acid metabolism to NOA pathogenesis have not yet been fully elucidated.Multi-omics analyses,including microarray analysis,single-cell RNA sequencing(scRNA-seq),and metabolomics,were utilized to investigate disruptions in fatty acid metabolism associated with NOA using data from public databases.Results identified ACSL6,ACSBG2,and OLAH as key genes linked to fatty acid metabolism dysregulation,suggesting their potential causative roles in NOA.A marked reduction in omega-3 polyunsaturated fatty acids,especially docosahexaenoic acid(DHA),was observed,potentially contributing to the pathological process of NOA.Sertoli cells in NOA patients exhibited apparent fatty acid metabolic dysfunction,with PPARG identified as a key transcription factor(TF)regulating this process.Functional analyses demonstrated that PPARG is crucial for maintaining blood-testis barrier(BTB)integrity and promoting spermatogenesis via regulation of fatty acid metabolism.These findings reveal the pivotal role of fatty acid metabolism in NOA and identify PPARG as a potential therapeutic target. 展开更多
关键词 Non-obstructive azoospermia Fatty acid metabolism Sertoli cell Multi-omics Single-cell RNA sequencing
在线阅读 下载PDF
Effects of maternal feeding of clofibrate on hepatic fatty acid metabolism in suckling piglet
18
作者 Jinan Zhao Brandon Pike +5 位作者 Feng Wang Lin Yang Paige Meisner Yanling Huang Jack Odle Xi Lin 《Journal of Animal Science and Biotechnology》 2025年第1期424-440,共17页
Background Energy deficiency is a leading cause of the high pre-weaning mortality of neonatal piglets in the swine industry.Thus,optimal energy metabolism is of crucial importance for improving the survivability of ne... Background Energy deficiency is a leading cause of the high pre-weaning mortality of neonatal piglets in the swine industry.Thus,optimal energy metabolism is of crucial importance for improving the survivability of neonatal piglets.The effective utilization of milk fat as primary energy is indispensably required.Methods Pregnant sows(n=27)were randomly assigned into 3 treatments.Each treatment received a standard diet(3,265 kcal ME/kg)supplemented with either 0,0.25%or 0.5%clofibrate(w/w)from d 107 of gestation to d 7 of lacta-tion.The effects of maternal clofibrate on their milk fatty acid(FA)and performance of the piglets were evaluated.The evaluations were performed via measuring sow productive performance,milk FA composition,and hepatic FA oxida-tion of the piglets at birth and d 1,7,14 and 19 after birth.Results Maternal supplementation of clofibrate had no effect on reproductive performance of the sows at farrowing and weaning(P>0.05).However,the mortality at weaning was reduced for piglets from sows with 0.25%of clofi-brate,and the average weekly(and daily)gain was higher in piglets from sows that received clofibrate than sows without clofibrate in the first week(P<0.0001).Maternal clofibrate increased percentage of milk C12:0 and C14:0 FAs but decreased C18:2 and n-6 polyunsaturated FAs.Maternal clofibrate also increased plasma ketone body levels and hepatic FA oxidation measured at the first day of birth,but the increase was not detected in piglets on d 7,14 or 19.Clofibrate was not detected in milk collected from the clofibrate-treated sows.The percentage of FA oxidation decreased,and the percentage of FA esterification increased with increasing in postnatal age.Supplemental carni-tine increased FA oxidation regardless of succinate dehydrogenase inhibition,and the increase had no effect on FA esterification.Conclusions Maternal supplementation of clofibrate during late gestation and early lactation increases hepatic FA oxidative metabolism at birth and improves growth performance of newborn piglets.Maternal clofibrate transfer to suckling piglets via milk was not detected.Carnitine availability is critical for piglets to maintain a high FA oxidation rate during the suckling period. 展开更多
关键词 CLOFIBRATE Hepatic fatty acid oxidation and metabolism Newborn pigs Postnatal age PPARα
在线阅读 下载PDF
Dysfunctional glucose metabolism triggers oxidative stress to induce kidney injury in diabetes
19
作者 Meng Gao Meng-Ting Dai Guo-Hua Gong 《World Journal of Diabetes》 2025年第4期19-24,共6页
In this editorial,we discussed the article published in the recent issue of the World Journal of Diabetes.To understand the effect of mizagliflozin on kidney injury induced by diabetes,we focused on the mechanisms by ... In this editorial,we discussed the article published in the recent issue of the World Journal of Diabetes.To understand the effect of mizagliflozin on kidney injury induced by diabetes,we focused on the mechanisms by which high glucose triggers oxidative stress and contributes to kidney injury in diabetes.The high level of unmetabolized glucose reaching the kidney triggers glucose reabsorption by renal tubules,which elevates the cellular glucose level of renal cells.High glucose induces lactate dehydrogenase overexpression and thus shifts glucose metabolism,which causes mitochondrial dysfunction.Mitochondria generate approximately 90%of the reactive oxygen species in cells,whose dysfunction further alters glucose metabolism and enhances reactive oxygen species generation.Oxidative stress stimulates proinflammatory factor production and kidney inflammatory injury.Mizagliflozin decreases glucose reabsorption and thus ameliorates diabetes-induced kidney injury. 展开更多
关键词 Glucose metabolism Sodium-D-glucose cotransporter 1 Glucose reabsorption Mitochondrial dysfunction Reactive oxygen species Inflammation
在线阅读 下载PDF
Maternal high-fat diet impairs offspring glucose metabolism and programs hepatic DNA methylation linked to NK cell-mediated cytotoxicity signaling pathway at weaning
20
作者 Sheng Zheng Ling Zhang +3 位作者 Shixuan Zhang Guanyu Hu Yikai Li Jia Zheng 《Food Science and Human Wellness》 2025年第4期1576-1587,共12页
Maternal consumption of a high-fat diet has been linked to increased risks of obesity and impaired glucose metabolism in offspring.However,the precise epigenetic mechanisms governing these intergenerational effects,pa... Maternal consumption of a high-fat diet has been linked to increased risks of obesity and impaired glucose metabolism in offspring.However,the precise epigenetic mechanisms governing these intergenerational effects,particularly during the early stages of offspring development,remain poorly understood.In this study,female C57BL/6J mice were randomly assigned to either a high-fat diet or normal chow diet throughout gestation and lactation.Methylated DNA immunoprecipitation(MeDIP)coupled with microarray analysis was employed to identify differentially methylated genes in the livers of offspring at weaning age.We found that maternal high-fat diet feeding predisposes offspring to obesity and impaired glucose metabolism as early as the weaning period.DNA methylation profile analysis unveiled a significant enrichment of differentially methylated genes within the natural killer(NK)cell-mediated cytotoxicity pathway.MeDIP-PCR validated reduced methylation levels of specific genes within this pathway,including tumour necrosis factorα(TNF-α),phosphoinositide 3-kinase(PI3K),and SHC adaptor protein 1(SHC1).Consistently,the expressions of TNF-α,PI3K,and SHC1 were significantly upregulated,accompanied by elevated serum TNF-αand interleukin-6(IL-6)levels in offspring from dams fed with high-fat diet.Moreover,we assessed the expressions of genes associated with NK cell activities,uncovering a notable rise in hepatic granzyme B levels and a trend towards increased CD107a expression in offspring from dams fed a high-fat diet.In addition,methylation levels of TNF-α,PI3K,and SHC1 promoters were inversely correlated with glucose response during glucose tolerance testing.In conclusion,our findings underscore the critical role of the NK cell-mediated cytotoxicity signaling pathway in mediating DNA methylation patterns,thereby contributing to the programming effects of maternal high-fat diet consumption on offspring glucose metabolism as early as the weaning period. 展开更多
关键词 Maternal high-fat diet consumption Glucose metabolism DNA methylation Natural killer cell-mediated cytotoxicity WEANING
在线阅读 下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部