This study was carried out to assess the prevalence of resistance genes in strains of Escherichia coli and Salmonella spp. isolated from free-range chickens in Ouagadougou, where resistant bacteria can be transmitted ...This study was carried out to assess the prevalence of resistance genes in strains of Escherichia coli and Salmonella spp. isolated from free-range chickens in Ouagadougou, where resistant bacteria can be transmitted to humans via faeces or contaminated meat. A total of 280 strains of Escherichia coli and 129 strains of Salmonella spp. resistant to at least one beta-lactam or carbapenem antibiotic were used in this study. PCR analyses revealed the presence of ESBL (extended spectrum beta lactamase) resistance genes in Escherichia coli isolates, with 3.21% (9/280) possessing the CTX-M (Cefotaximase) gene, 15.35% (43/280) had the SHV (Sulfhydril Variable) gene, and 11.42% (32/280) had carbapenemase resistance genes, more specifically IMP (Imipenemase metallo-beta-lactamase). As regards Salmonella spp. strains, only the presence of the SHV (Sulfhydril Variable) gene was identified in 2.32% (3/129) of isolates belonging to the ESBL family, while 26.35% (34/129) and 13.95% (18/129) of isolates respectively possessed the IMP (Imipenemase metallo-beta-lactamase) and NDM (New Delhi metallo-β-lactamase) genes, both of the carbapenemase type. The significant prevalence of resistance genes in bacterial strains isolated from chickens sold outdoors in Ouagadougou raises major public health concerns, due to the possible transmission of these resistant strains to humans through the consumption of contaminated meat, thus complicating the treatment of bacterial infections.展开更多
Introduction: Enterobacteriaceae causing urinary tract infections (UTI) have developed resistance to the commonly used antibiotics due to emergence of Extended Spectrum Beta-Lactamases (ESBLs) and Carbapenamase produc...Introduction: Enterobacteriaceae causing urinary tract infections (UTI) have developed resistance to the commonly used antibiotics due to emergence of Extended Spectrum Beta-Lactamases (ESBLs) and Carbapenamase producing Enterobactericeae which are a public health problem worldwide. This study aims to determine the prevalence and characterize ESBLs and carbapenamase producing Enterobactericeae. Method: A cross-sectional study was carried out in Gertrude’s Children’s Hospital, Nairobi. 238 urine samples were collected from patients with urinary symptoms attending the outpatient department within the period 2020-2021. The urine were examined macroscopically and microscopically. Identification and antimicrobial susceptibility testing were done using VITEK® 2 Compact system (BioMérieux). Double disc synergy test and modified hodge tests were done as confirmatory tests for ESBLs and Carbapenamase phenotypes respectively. Polymerase Chain Reaction was used for the detection of blaCTX-M, blaTEM, blaSHV, blaKPC and blaOXA-48 genes. Results: From the 238 children sampled the prevalence of UTI caused by Enterobactericeae was 22.3%. The Enterobacteriaceae species isolated were Escherichia coli (84.9%), Klebsiella pneumoniae (5.66%), Proteus mirabillis (5.66%), Enterobacter aerogenes (1.89%) and Morganella morganii (1.89%). The isolated species were resistant to ampicillin. Meropenem had the highest susceptibility. Only E. coli species had the ESBLs (26.4%) and carbapenamase (1.9%) phenotypes. 100% had BlaCTX-M while 50% had blaTEM resistant gene. There was a significant association (p Conclusion: Ampicillin resistance resulted to use of alternative drugs and Meropenem was the drug of choice where increased resistance to the recommended drugs was noted. Further research on resistant genes is recommended.展开更多
Background: Recently micro-organisms that synthesize extended-spectrum β-lactamase (ESBLs) were increased. The peculiarities of ESBL synthesis of Escherichia coli and Klebsiella pneumoniae strains that cause nosocomi...Background: Recently micro-organisms that synthesize extended-spectrum β-lactamase (ESBLs) were increased. The peculiarities of ESBL synthesis of Escherichia coli and Klebsiella pneumoniae strains that cause nosocomial urinary tract infections, surgical site infections and pneumonia in surgical clinic were studied. ESBL synthesis were observed 38.9% of E. coli strains obtained from urine, 92.3% of strains obtained from surgical site infections, and 50% of strains obtained from sputum. ESBL synthesis were observed 37.5% of K. pneumoniae strains obtained from urine, 85.7% of strains obtained from surgical site infections, and 60% of strains obtained from sputum. Different levels of ESBL synthesize of E. coli and K. pneumoniae strains isolated from different pattern is discussed. Conclusion. ESBL synthesis is common in E. coli and K. pneumoniae strains, which cause nosocomial infections. The frequency of occurrence of ESBL s synthesis among of these strains depends on clinical forms of nosocomial infections.展开更多
Pseudomonas aeruginosa is an opportunistic Gram-negative bacterium, responsible for nosocomial infections, with a complex arsenal of pathogenicity. The aim of this study was to simultaneously characterize the potentia...Pseudomonas aeruginosa is an opportunistic Gram-negative bacterium, responsible for nosocomial infections, with a complex arsenal of pathogenicity. The aim of this study was to simultaneously characterize the potential for resistance, virulence and biofilm formation in clinical strains. A total of 104 clinical P. aeruginosa strains (blood (26), stools (26), pus (26) and urine (26) were the subject of this study. The Mueller-Hinton diffusion method, agglutination test and combined disk diffusion test respectively made it possible to phenotypically determine the resistance profile, serogroups and metallo-β-lactamase production. Virulence, resistance and biofilm formation supports were detected by PCR. P. aeruginosa strains were resistant to aztreonam (76.4%), ticarcillin (62.4%), piperacillin (32.4%), imipenem (17.1%), cefepime (14%) and Ceftazidime (8.3%). The serogroups O11 (22.1%), O7 (18.3%), O16 (16.3%), and O9 (14.4%) were mainly determined in clinical strains. The total prevalence of metallo-β lactamase genes was 12.5% (blaIMP) and 11.5% (blaVIM). In descending order, the virulence genes exoS (55.8%), plcH (48.1%), LasB (47.1%), pilB (42.3%) and algD (41.3%) were detected (p pelA (28.8%) and pslA (23.1%). In conclusion, this study highlights the significant resistance, virulence, and biofilm-forming capabilities of clinical Pseudomonas aeruginosa strains. By profiling 104 strains, we found high resistance rates to multiple antibiotics, with notable serogroups and a considerable prevalence of metallo-β-lactamase genes, which pose a challenge for treatment. Additionally, key virulence genes and biofilm-associated genes were prevalent, underscoring the pathogenic potential of these strains. These findings underscore the importance of characterizing pathogenicity factors as a valuable strategy for monitoring and managing P. aeruginosa infections, especially in healthcare settings where such infections are common and difficult to treat.展开更多
建立了一种在温和条件下,用可见光催化合成一系列3,4-二氢异喹啉-1(2H)-酮及其衍生物的方法。该方法在室温条件下,以2-烯丙基-N-甲氧基苯甲酰胺为模板底物,以碘化钾作为光催化剂,25 W 460 nm的蓝色LED灯照射下,合成一系列3,4-二氢异喹啉...建立了一种在温和条件下,用可见光催化合成一系列3,4-二氢异喹啉-1(2H)-酮及其衍生物的方法。该方法在室温条件下,以2-烯丙基-N-甲氧基苯甲酰胺为模板底物,以碘化钾作为光催化剂,25 W 460 nm的蓝色LED灯照射下,合成一系列3,4-二氢异喹啉-1(2H)-酮衍生物,最高产率可达到83%。该合成路径具有底物适用范围广、经济实用等特点,为3,4-二氢异喹啉-1(2H)-酮衍生物合成提供了一种经济简便的方法。展开更多
文摘This study was carried out to assess the prevalence of resistance genes in strains of Escherichia coli and Salmonella spp. isolated from free-range chickens in Ouagadougou, where resistant bacteria can be transmitted to humans via faeces or contaminated meat. A total of 280 strains of Escherichia coli and 129 strains of Salmonella spp. resistant to at least one beta-lactam or carbapenem antibiotic were used in this study. PCR analyses revealed the presence of ESBL (extended spectrum beta lactamase) resistance genes in Escherichia coli isolates, with 3.21% (9/280) possessing the CTX-M (Cefotaximase) gene, 15.35% (43/280) had the SHV (Sulfhydril Variable) gene, and 11.42% (32/280) had carbapenemase resistance genes, more specifically IMP (Imipenemase metallo-beta-lactamase). As regards Salmonella spp. strains, only the presence of the SHV (Sulfhydril Variable) gene was identified in 2.32% (3/129) of isolates belonging to the ESBL family, while 26.35% (34/129) and 13.95% (18/129) of isolates respectively possessed the IMP (Imipenemase metallo-beta-lactamase) and NDM (New Delhi metallo-β-lactamase) genes, both of the carbapenemase type. The significant prevalence of resistance genes in bacterial strains isolated from chickens sold outdoors in Ouagadougou raises major public health concerns, due to the possible transmission of these resistant strains to humans through the consumption of contaminated meat, thus complicating the treatment of bacterial infections.
文摘Introduction: Enterobacteriaceae causing urinary tract infections (UTI) have developed resistance to the commonly used antibiotics due to emergence of Extended Spectrum Beta-Lactamases (ESBLs) and Carbapenamase producing Enterobactericeae which are a public health problem worldwide. This study aims to determine the prevalence and characterize ESBLs and carbapenamase producing Enterobactericeae. Method: A cross-sectional study was carried out in Gertrude’s Children’s Hospital, Nairobi. 238 urine samples were collected from patients with urinary symptoms attending the outpatient department within the period 2020-2021. The urine were examined macroscopically and microscopically. Identification and antimicrobial susceptibility testing were done using VITEK® 2 Compact system (BioMérieux). Double disc synergy test and modified hodge tests were done as confirmatory tests for ESBLs and Carbapenamase phenotypes respectively. Polymerase Chain Reaction was used for the detection of blaCTX-M, blaTEM, blaSHV, blaKPC and blaOXA-48 genes. Results: From the 238 children sampled the prevalence of UTI caused by Enterobactericeae was 22.3%. The Enterobacteriaceae species isolated were Escherichia coli (84.9%), Klebsiella pneumoniae (5.66%), Proteus mirabillis (5.66%), Enterobacter aerogenes (1.89%) and Morganella morganii (1.89%). The isolated species were resistant to ampicillin. Meropenem had the highest susceptibility. Only E. coli species had the ESBLs (26.4%) and carbapenamase (1.9%) phenotypes. 100% had BlaCTX-M while 50% had blaTEM resistant gene. There was a significant association (p Conclusion: Ampicillin resistance resulted to use of alternative drugs and Meropenem was the drug of choice where increased resistance to the recommended drugs was noted. Further research on resistant genes is recommended.
文摘Background: Recently micro-organisms that synthesize extended-spectrum β-lactamase (ESBLs) were increased. The peculiarities of ESBL synthesis of Escherichia coli and Klebsiella pneumoniae strains that cause nosocomial urinary tract infections, surgical site infections and pneumonia in surgical clinic were studied. ESBL synthesis were observed 38.9% of E. coli strains obtained from urine, 92.3% of strains obtained from surgical site infections, and 50% of strains obtained from sputum. ESBL synthesis were observed 37.5% of K. pneumoniae strains obtained from urine, 85.7% of strains obtained from surgical site infections, and 60% of strains obtained from sputum. Different levels of ESBL synthesize of E. coli and K. pneumoniae strains isolated from different pattern is discussed. Conclusion. ESBL synthesis is common in E. coli and K. pneumoniae strains, which cause nosocomial infections. The frequency of occurrence of ESBL s synthesis among of these strains depends on clinical forms of nosocomial infections.
文摘Pseudomonas aeruginosa is an opportunistic Gram-negative bacterium, responsible for nosocomial infections, with a complex arsenal of pathogenicity. The aim of this study was to simultaneously characterize the potential for resistance, virulence and biofilm formation in clinical strains. A total of 104 clinical P. aeruginosa strains (blood (26), stools (26), pus (26) and urine (26) were the subject of this study. The Mueller-Hinton diffusion method, agglutination test and combined disk diffusion test respectively made it possible to phenotypically determine the resistance profile, serogroups and metallo-β-lactamase production. Virulence, resistance and biofilm formation supports were detected by PCR. P. aeruginosa strains were resistant to aztreonam (76.4%), ticarcillin (62.4%), piperacillin (32.4%), imipenem (17.1%), cefepime (14%) and Ceftazidime (8.3%). The serogroups O11 (22.1%), O7 (18.3%), O16 (16.3%), and O9 (14.4%) were mainly determined in clinical strains. The total prevalence of metallo-β lactamase genes was 12.5% (blaIMP) and 11.5% (blaVIM). In descending order, the virulence genes exoS (55.8%), plcH (48.1%), LasB (47.1%), pilB (42.3%) and algD (41.3%) were detected (p pelA (28.8%) and pslA (23.1%). In conclusion, this study highlights the significant resistance, virulence, and biofilm-forming capabilities of clinical Pseudomonas aeruginosa strains. By profiling 104 strains, we found high resistance rates to multiple antibiotics, with notable serogroups and a considerable prevalence of metallo-β-lactamase genes, which pose a challenge for treatment. Additionally, key virulence genes and biofilm-associated genes were prevalent, underscoring the pathogenic potential of these strains. These findings underscore the importance of characterizing pathogenicity factors as a valuable strategy for monitoring and managing P. aeruginosa infections, especially in healthcare settings where such infections are common and difficult to treat.
文摘建立了一种在温和条件下,用可见光催化合成一系列3,4-二氢异喹啉-1(2H)-酮及其衍生物的方法。该方法在室温条件下,以2-烯丙基-N-甲氧基苯甲酰胺为模板底物,以碘化钾作为光催化剂,25 W 460 nm的蓝色LED灯照射下,合成一系列3,4-二氢异喹啉-1(2H)-酮衍生物,最高产率可达到83%。该合成路径具有底物适用范围广、经济实用等特点,为3,4-二氢异喹啉-1(2H)-酮衍生物合成提供了一种经济简便的方法。