期刊文献+
共找到1,259篇文章
< 1 2 63 >
每页显示 20 50 100
Influence of Fermentation and Drying Practices on the Ochratoxin A Content of Cocoa Beans from the Main Production Areas in Côte d’Ivoire
1
作者 Brou Julien Kouakou Kouadio Emmanuel N’goran Koffi Christophe Kobenan 《Advances in Microbiology》 2025年第1期70-79,共10页
Côte d’Ivoire has been the world’s leading producer of cocoa beans for several decades. Apart from this production performance, the quality of the beans, which are mainly exported to the major chocolate-making ... Côte d’Ivoire has been the world’s leading producer of cocoa beans for several decades. Apart from this production performance, the quality of the beans, which are mainly exported to the major chocolate-making countries, presents a quality problem to the point of suffering a discount on the international market. One of these quality problems is the content of ochratoxin A, a mycotoxin produced by fungi. Finally, to verify the level of contamination in beans produced in Côte d’Ivoire, a study was carried out. It consisted of collecting information on fermentation and drying times (The two major post-harvest operations) and collecting beans, which were analyzed by electrophoresis using the High Performance Liquid Chromatography (HPLC) method. The results obtained show ochratoxin A contents of between 0.05 µg/kg and 0.17 µg/kg. The general level of contamination is therefore very low and below the tolerable limit which is 2 µg/kg. In addition, the correlative study between the fermentation and drying times of the beans revealed no significant influence (p < 0.01) of the duration of these operations on the level of ochratoxin A contamination. Major contamination can occur after post-harvest activities carried out by producers. This is certainly due to the development of fungi responsible for the production of ochratoxin A during the period of storage and marketing of cocoa beans in conditions of high humidity in storage enclosures. Producers need to be made more aware of the need to ensure that cocoa beans are properly dried and stored in dry areas to avoid moisture build-up, which is a source of mould growth and ochratoxin A production. 展开更多
关键词 Ochratoxin A Cocoa Beans fermentation Drying Practices Cote d’Ivoire Mycotoxins HPLC Analysis Fungal Contamination Post-Harvest Operations Food Safety
在线阅读 下载PDF
Release profile and metabolism of bound polyphenols of oat bran during in vitro simulated gastrointestinal digestion and colonic fermentation
2
作者 Yu Zhang Bing Bai +3 位作者 Kai Huang Sen Li Hongwei Cao Xiao Guan 《Food Science and Human Wellness》 2025年第4期1557-1565,共9页
Whole-grain foods have attracted emerging attention due to their health benefits.Whole grains are rich in bound polyphenols(BPs)linked with dietary fibers,which is largely underestimated compared with free polyphenols... Whole-grain foods have attracted emerging attention due to their health benefits.Whole grains are rich in bound polyphenols(BPs)linked with dietary fibers,which is largely underestimated compared with free polyphenols.In this study,in vitro simulated gastrointestinal digestion and colonic fermentation models were used to study the release profile and metabolism of BPs of oat bran.Significantly higher level of BPs was released during in vitro colon fermentation(3.05 mg GAE/g)than in gastrointestinal digestion(0.54 mg GAE/g).Five polyphenols were detected via LC-MS and their possible conversion pathways were speculated.Released BPs exhibited chemical antioxidant capacity.16S rRNA sequencing further revealed that Clostridium butyricum,Enterococcus faecalis,Bacteroides acidifaciens were the key bacteria involved in the release of BPs,and this was verified by whole-cell transformation.Our results helped to explain the possible mechanism of the health benefits of BPs in whole grains. 展开更多
关键词 Oat bran Bound polyphenols In vitro digestion Colonic fermentation Ferulic acid
在线阅读 下载PDF
Insights into the biogenic amine-generating microbes during two different types of soy sauce fermentation as revealed by metagenome-assembled genomes
3
作者 Guiliang Tan Yi Wang +7 位作者 Min Hu Xueyan Li Xiangli Li Ziqiang Pan Mei Li Lin Li Ziyi Zheng Lei Shi 《Food Science and Human Wellness》 2025年第3期998-1007,共10页
In-depth knowledge of the microbes responsible for biogenic amine(BA)production during soy sauce fermentation remains limited.Herein,the variations in the BA profiles,microbial communities,and microbes involved in BA ... In-depth knowledge of the microbes responsible for biogenic amine(BA)production during soy sauce fermentation remains limited.Herein,the variations in the BA profiles,microbial communities,and microbes involved in BA production during the fermentation of soy sauce through Japanese-type(JP)and Cantonese-type(CP)processes were compared.BA analysis revealed that the most abundant BA species were putrescine,tyramine,and histamine in the later three stages(1187.68,785.16,and 193.20 mg/kg on average,respectively).The BA profiles differed significantly,with CP samples containing higher contents of putrescine,tyramine,and histamine(P<0.05)at the end of fermentation.Metagenomic analysis indicated that BA-producing genes exhibited different abundance profiles,with most genes,including spe A,spe B,arg,spe E,and tyr DC,having higher abundances in microbial communities during the CP process.In total,15 high-quality metagenome-assembled genomes(MAGs)were retrieved,of which 10 encoded at BA production-related genes.Enterococcus faecium(MAG10)and Weissella paramesenteroides(MAG5)might be the major tyramine producers.The high putrescine content in CP might be associated with the high abundance of Staphylococcus gallinarum(MAG8).This study provides a comprehensive understanding of the diversity and abundance of genes involved in BA synthesis,especially at the species level,during food fermentation. 展开更多
关键词 Soy sauce fermentation Biogenic amine Amine-producing genes Metagenome-assembled genomes
在线阅读 下载PDF
Structure and immunomodulatory activity of Lentinus edodes polysaccharides modified by probiotic fermentation 被引量:3
4
作者 Jingjing Liang Meina Zhang +6 位作者 Xiaohan Li Yuan Yue Xiaowei Wang Mengzhen Han Tianli Yue Zhouli Wang Zhenpeng Gao 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期421-433,共13页
Plant-based fermentations provide an untapped source for novel biotechnological applications.In this study,a probiotic named Lactobacillus fermentum 21828 was introduced to ferment Lentinus edodes.Polysaccharides were... Plant-based fermentations provide an untapped source for novel biotechnological applications.In this study,a probiotic named Lactobacillus fermentum 21828 was introduced to ferment Lentinus edodes.Polysaccharides were extracted from fermented and non-fermented L.edodes and purified via DEAE-52 and Sephadex G-100.The components designated F-LEP-2a and NF-LEP-2a were analyzed by FT-IR,HPGPC,HPAEC,SEM,GC-MS and NMR.The results revealed that probiotic fermentation increased the molecular weight from 1.16×10^(4) Da to 1.87×10^(4) Da and altered the proportions of glucose,galactose and mannose,in which glucose increased from 45.94%to 48.16%.Methylation analysis and NMR spectra indicated that F-LEP-2a and NF-LEP-2a had similar linkage patterns.Furthermore,their immunomodulatory activities were evaluated with immunosuppressive mice.NF-LEP and F-LEP improved immune organ indices,immunoglobulin(Ig G and Ig M)and cytokines concentrations;restored the antioxidation capacity of liver;and maintained the balance of gut microbiota.F-LEP displayed better moderating effects on the spleen index,immunoglobulin,cytokines and the diversity of gut microbiota than NF-LEP(200,400 mg/kg).Our study provides an efficient and environment-friendly way for the structural modification of polysaccharides,which helps to enhance their biological activity and promote their wide application in food,medicine and other fields. 展开更多
关键词 Lentinus edodes polysaccharide Lactobacillus fermentum fermentation Structural analysis Immunoregulatory activity Nuclear magnetic resonance
在线阅读 下载PDF
Influence of nitrogen status on fermentation performances of non-Saccharomyces yeasts:a review 被引量:2
5
作者 Jinchen Li Mengmeng Yuan +3 位作者 Nan Meng Hehe Li Jinyuan Sun Baoguo Sun 《Food Science and Human Wellness》 SCIE CSCD 2024年第2期556-567,共12页
Nitrogen,one of the most crucial nutrients present in grapes and musts,plays a key role in yeast activities during alcoholic fermentation.Such influences are imposed on yeast growth and fermentation performances inclu... Nitrogen,one of the most crucial nutrients present in grapes and musts,plays a key role in yeast activities during alcoholic fermentation.Such influences are imposed on yeast growth and fermentation performances including the formation of secondary metabolites.Saccharomyces cerevisiae,the main yeast responsible for fermentation,has been studied extensively regarding nitrogen impacts.On the other hand,a similar study for non-Saccharomyces yeasts,whose contributions to winemaking have gradually been acknowledged,remains to be fully explored,with a few studies being reported.This review starts by discussing nitrogen impacts on non-Saccharomyces yeast growth and fermentation kinetics in different case scenarios,then proceeds to summarize the nitrogen preferences of individual yeast strains with regulation mechanisms elucidated by recent studies.Detailed discussions on the influences on the production of volatile compounds and proposed pathways therein are made,followed by future work suggested as the final section.In summarizing the nitrogen impacts on non-Saccharomyces yeasts throughout alcoholic fermentation,this review will be helpful in obtaining a more comprehensive view on these non-conventional wine yeasts in terms of nutrient requirements and corresponding volatile production.Research gaps will therefore be elucidated for future research. 展开更多
关键词 Non-Saccharomyces yeasts NITROGEN fermentation kinetics Nitrogen preference Wine aroma
在线阅读 下载PDF
Process Analysis of Mobile Fermentation of Spent White Hypsizygus marmoreus Substrate with Self-made Mobile Fermentation Bag
6
作者 罗茂春 林标声 +1 位作者 邱丰艳 陈柳花 《Agricultural Science & Technology》 CAS 2016年第4期829-832,共4页
The self-made mobile fermentation bag for spent white Hypsizygus marmoreus substrate was developed, and the relevant fermentation process was studied. The results showed that under the condition of single addition of ... The self-made mobile fermentation bag for spent white Hypsizygus marmoreus substrate was developed, and the relevant fermentation process was studied. The results showed that under the condition of single addition of Lactobacillus,nitrogen-free extract was degraded into lactic acid, leading to decreased pH value.On day 10, the fermentation effect reached the best with Lactobacillus abundance of 5.12×10~7/ml, lactic acid content of 0.48% and strong acid flavor. At this time, the fermentation material was moist without mildew and agglomeration, and was suitable for livestock and poultry. However, after 10 days, undesirable acids and mildew generated, a large amount of lactic acid bacteria died, and the fermentation material turned black and agglomerated, and became unsuitable for feeding livestock and poultry. Throughout the fermentation process, the pH value first decreased continuously until to 4.0, and then remained stable. During the fermentation of spent white H. marmoreus substrate, the nitrogen-free extract and crude fiber contents decreased, the crude protein content increased, while other indicators remained unchanged. 展开更多
关键词 Self-made fermentation bag Mobile fermentation Spent white Hypsizy gus marmoreus substrate fermentation analysis
在线阅读 下载PDF
Study on Solid Fermentation and Antioxidant Function of Natto 被引量:1
7
作者 Junxia SONG Hongbing QI Yanhong MAO 《Asian Agricultural Research》 2024年第1期32-36,共5页
[Objectives]To study the optimum conditions of solid fermentation of natto with antioxidant function as an index.[Methods]Single factor experiment and orthogonal experiment were designed to study the effects of temper... [Objectives]To study the optimum conditions of solid fermentation of natto with antioxidant function as an index.[Methods]Single factor experiment and orthogonal experiment were designed to study the effects of temperature,time,initial pH and inoculum amount on the antioxidant activity of natto solid fermentation.The optimum conditions of natto solid fermentation were determined and the antioxidant ac-tivity of natto extract was compared.[Results]The optimal fermentation conditions were as follows:temperature 32℃,initial pH 7.0,inocu-lation amount 8%,fermentation time 32 h.The hydroxyl radical scavenging rate of natto solid fermentation crude extract was the highest,which was 82.7%.The optimized nato fermentation extract showed stronger scavenging ability for-OH and O,:,and showed obvious dose-effect relationship.ICso was 3.63 and 4.24 mg/mL,respectively,and the scavenging efficiency was 1.3 and 1.9 times higher than that of the unoptimized fermentation extract,respectively.[Conclusions]Natto is rich in nattokinase and other functional factors,and its antioxidant ac-tivity can be improved by optimizing fermentation technology,so that natto products can be widely used,including cosmetic raw materials,nat-to skin care soap,health food and medicine,etc.,and have a broader development prospect. 展开更多
关键词 NATTO Solid fermentation Hydroxyl radical scavenging rate Antioxidant activity
在线阅读 下载PDF
Recent advances in keratinase production via protein engineering,breeding,and fermentation 被引量:1
8
作者 Ali Raza Ishaq Zheng Zhang +2 位作者 Penghui He Min Xiong Shouwen Chen 《Advanced Agrochem》 2024年第3期188-196,共9页
The gene editing and synthetic biological tools have led to the implementation of diverse metabolic engineering approaches to enhance the production of specific enzymes.Microbial keratinases can convert keratin wastes... The gene editing and synthetic biological tools have led to the implementation of diverse metabolic engineering approaches to enhance the production of specific enzymes.Microbial keratinases can convert keratin wastes into valuable compounds for mankind.Since the market for keratinases cannot be satisfied by production from wild hosts,it is obligatory to develop hosts with high keratinase yields.The intention of this review is to evaluate microbial keratinase advancement through protein engineering,breeding techniques,and fermentation optimization.The main aim of protein engineering is to improve the heat resistance ability and catalytic activity of keratinases by employing mutagenesis methods.Moreover,modifying the expression elements and host engineering are also two unique ways to augment the keratinase yield.Intending to accelerate the production of modified keratinase,this review attempts to highlight the optimization of expression elements,such as promoter engineering,UTR,signal peptide,and codon optimization.Moreover,the approaches of host engineering including strengthening precursor supply,membrane surface engineering,and optimization of secretion pathways were also explained here.Furthermore,it is also essential to optimize the medium composition and fermentation condition for high keratinase yield.This review also addressed the present advancements,difficulties,and tendencies in the field of microbial keratinase production,along with its potential. 展开更多
关键词 KERATINASE Protein engineering Expression elements BREEDING fermentation
在线阅读 下载PDF
Postbiotics from Saccharomyces cerevisiae fermentation stabilize microbiota in rumen liquid digesta during grain-based subacute ruminal acidosis(SARA) in lactating dairy cows
9
作者 Junfei Guo Zhengxiao Zhang +3 位作者 Le Luo Guan Ilkyu Yoon Jan C.Plaizier Ehsan Khafipour 《Journal of Animal Science and Biotechnology》 SCIE CAS CSCD 2024年第5期2059-2080,共22页
Background Subacute ruminal acidosis(SARA)is a common metabolic disorder of high yielding dairy cows,and it is associated with dysbiosis of the rumen and gut microbiome and host inflammation.This study evaluated the i... Background Subacute ruminal acidosis(SARA)is a common metabolic disorder of high yielding dairy cows,and it is associated with dysbiosis of the rumen and gut microbiome and host inflammation.This study evaluated the impact of two postbiotics from Saccharomyces cerevisiae fermentation products(SCFP)on rumen liquid associated microbiota of lactating dairy cows subjected to repeated grain-based SARA challenges.A total of 32 rumen cannulated cows were randomly assigned to 4 treatments from 4 weeks before until 12 weeks after parturition.Treatment groups included a Control diet or diets supplemented with postbiotics(SCFPa,14 g/d Original XPC;SCFPb-1X,19 g/d Nutri Tek;SCFPb-2X,38 g/d Nutri Tek,Diamond V,Cedar Rapids,IA,USA).Grain-based SARA challenges were conducted during week 5(SARA1)and week 8(SARA2)after parturition by replacing 20%DM of the base total mixed ration(TMR)with pellets containing 50%ground barley and 50%ground wheat.Total DNA from rumen liquid samples was subjected to V3–V416S r RNA gene amplicon sequencing.Characteristics of rumen microbiota were compared among treatments and SARA stages.Results Both SARA challenges reduced the diversity and richness of rumen liquid microbiota,altered the overall composition(β-diversity),and its predicted functionality including carbohydrates and amino acids metabolic pathways.The SARA challenges also reduced the number of significant associations among different taxa,number of hub taxa and their composition in the microbial co-occurrence networks.Supplementation with SCFP postbiotics,in particular SCFPb-2X,enhanced the robustness of the rumen microbiota.The SCFP supplemented cows had less fluctuation in relative abundances of community members when exposed to SARA challenges.The SCFP supplementation promoted the populations of lactate utilizing and fibrolytic bacteria,including members of Ruminococcaceae and Lachnospiraceae,and also increased the numbers of hub taxa during non-SARA and SARA stages.Supplementation with SCFPb-2X prevented the fluctuations in the abundances of hub taxa that were positively correlated with the acetate concentration,andα-andβ-diversity metrics in rumen liquid digesta.Conclusions Induction of SARA challenges reduced microbiota richness and diversity and caused fluctuations in major bacterial phyla in rumen liquid microbiota in lactating dairy cows.Supplementation of SCFP postbiotics could attenuate adverse effects of SARA on rumen liquid microbiota. 展开更多
关键词 Postbiotics Rumen microbiota Saccharomyces cerevisiae fermentation products SARA
在线阅读 下载PDF
Microbiomics and metabolomics insights into the microbial regulation on the formation of flavor components in the traditional fermentation process of Chinese Hongqu aged vinegar
10
作者 Shangong Tong Wenlong Li +7 位作者 Yuandong Rao Yanqin Xiao Yingyin Yan Weiling Guo Xucong Lü Jinyuan Sun Lianzhong Ai Li Ni 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第5期2765-2778,共14页
This study aimed to investigate microbial succession and metabolic dynamics during the traditional fermentation of Hongqu aged vinegar,and explore the core functional microbes closely related to the formation of flavo... This study aimed to investigate microbial succession and metabolic dynamics during the traditional fermentation of Hongqu aged vinegar,and explore the core functional microbes closely related to the formation of flavor components.Microbiome analysis demonstrated that Lactobacillus,Acetobacter,Bacillus,Enterobacter,Lactococcus,Leuconostoc and Weissella were the predominant bacterial genera,while Aspergillus piperis,Aspergillus oryzae,Monascus purpureus,Candida athensensis,C.xylopsoci,Penicillium ochrosalmoneum and Simplicillium aogashimaense were the predominant fungal species.Correlation analysis revealed that Acetobacter was positively correlated with the production of tetramethylpyrazine,acetoin and acetic acid,Lactococcus showed positive correlation with the production of 2-nonanone,2-heptanone,ethyl caprylate,ethyl caprate,1-hexanol,1-octanol and 1-octen-3-ol,C.xylopsoci and C.rugosa were positively associated with the production of diethyl malonate,2,3-butanediyl diacetate,acetoin,benzaldehyde and tetramethylpyrazine.Correspondingly,non-volatile metabolites were also detected through ultra-performance liquid chromatography-quadrupole time-of-flight mass spectrometry.A variety of amino acids and functional dipeptides were identified during the traditional brewing of Hongqu aged vinegar.Correlation analysis revealed that Lactobacillus was significantly associated with DL-lactate,indolelactic acid,D-(+)-3-phenyllactic acid,pimelic acid,pregabalin and 3-aminobutanoic acid.This study is useful for understanding flavor formation mechanism and developing effective strategies for the suitable strains selection to improve the flavor quality of Hongqu aged vinegar. 展开更多
关键词 Hongqu aged vinegar Traditional fermentation Microbial dynamics Flavor components Bidirectional orthogonal partial least squares
在线阅读 下载PDF
Microbial metabolic interaction in fermentation ecosystem and cooperation in flavor compounds formation of Chinese cereal vinegar
11
作者 Yanfang Wu Jing Liu +6 位作者 Dantong Liu Menglei Xia Jia Song Kai Liang Chaochun Li Yu Zheng Min Wang 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第6期3472-3481,共10页
Shanxi aged vinegar(SAV)is a famous cereal vinegar in China,which is produced through a solid-state fermentation where diverse microbes spontaneously and complex interactions occur.Here,combined with the metatranscrip... Shanxi aged vinegar(SAV)is a famous cereal vinegar in China,which is produced through a solid-state fermentation where diverse microbes spontaneously and complex interactions occur.Here,combined with the metatranscriptomics,the microbial co-occurrence network was constructed,indicating that Lactobacillus,Acetobacter and Pediococcus are the most critical genera to maintain the fermentation stability.Based on an extensive collection of 264 relevant literatures,a transport network containing 2271 reactions between microorganisms and compounds was constructed,showing that glucose(84%of all species),fructose(67%)and maltose(67%)are the most frequently utilized substrates while lactic acid(64%),acetic acid(45%)are the most frequently occurring metabolites.Specifically,the metabolic influence of species pairs was calculated using a mathematical calculation model and the metabolic influence network was constructed.The topology properties analysis found that Lactobacillus was the key role with robust metabolic control of vinegar fermentation ecosystem and acetic acid and lactic acid were the main metabolites with feedback regulation in microbial metabolism of SAV.Furthermore,systematic coordination of positive and negative impacts was proved to be inevitable to form flavor compounds and maintain a natural microbial ecosystem.This study provides a new perspective for understanding microbial interactions in fermented food. 展开更多
关键词 Cereal vinegar fermentation ecosystem Microbial metabolic interaction Lactobacillus
在线阅读 下载PDF
Allergen degradation of bee pollen by lactic acid bacteria fermentation and its alleviatory effects on allergic reactions in BALB/c mice
12
作者 Shuting Yin Qiangqiang Li +5 位作者 Yuxiao Tao Enning Zhou Kun Wang Wanwen Chen Xiangxin Li Liming Wu 《Food Science and Human Wellness》 SCIE CSCD 2024年第1期349-359,共11页
Food allergy as a global health problem threatens food industry.Bee pollen(BP)is a typical food with allergenic potentials,although it performs various nutritional/pharmacological functions to humans.In this study,lac... Food allergy as a global health problem threatens food industry.Bee pollen(BP)is a typical food with allergenic potentials,although it performs various nutritional/pharmacological functions to humans.In this study,lactic acid bacteria(LAB)were used to ferment Brassica napus BP for alleviating its allergenicity.Four novel allergens(glutaredoxin,oleosin-B2,catalase and lipase)were identified with significant decreases in LAB-fermented BP(FBP)than natural BP by proteomics.Meanwhile,metabolomics analysis showed significant increases of 28 characteristic oligopeptides and amino acids in FBP versus BP,indicating the degradation of LAB on allergens.Moreover,FBP showed alleviatory effects in BALB/c mice,which relieved pathological symptoms and lowered production of allergic mediators.Microbial high-throughput sequencing analysis showed that FBP could regulate gut microbiota and metabolism to strengthen immunity,which were closely correlated with the alleviation of allergic reactivity.These findings could contribute to the development and utilization of hypoallergenic BP products. 展开更多
关键词 Alleviatory effects Lactic acid bacteria fermentation Bee pollen allergen Gut microbiota Host metabolism
在线阅读 下载PDF
Impact of sourdough fermentation on nutrient transformations in cereal-based foods:Mechanisms,practical applications,and health implications
13
作者 Zhen Wang Luyang Wang 《Grain & Oil Science and Technology》 CAS 2024年第2期124-132,共9页
Sourdough is often considered a healthy choice and quality improver for use in cereal production due to its unique microbial composition and fermentation properties.During sourdough fermentation of cereals,biotransfor... Sourdough is often considered a healthy choice and quality improver for use in cereal production due to its unique microbial composition and fermentation properties.During sourdough fermentation of cereals,biotransformation of nutrients occurs,resulting in notable changes to proteins,carbohydrates,fats,vitamins,and minerals.Each nutrient undergoes specific transformations,providing various advantages for human health.Proteins undergo hydrolysis to produce small molecular weight peptides and amino acids that are more easily digested and absorbed by the human body.Carbohydrates break down to improve the digestibility and absorption of cereals and lower the glycemic index.Fatty acids experience oxidation to produce new substances with health benefits.Additionally,the application of sourdough fermentation can enhance the texture,flavor,and nutritional value of cereal foods while also extending their shelf life and improving food safety.In conclusion,sourdough fermentation has a broad range of applications in cereal food processing.Further research is encouraged to investigate the mechanisms and processes of sourdough fermentation to develop even more nutritious,healthy,and flavorful cereal-based foods. 展开更多
关键词 Sourdough fermentation Lactic acid bacteria PROTEOLYSIS Starch hydrolysis Low-GI NUTRIENTS
在线阅读 下载PDF
The influence of Lactobacillus plantarum fermentation in selenium-enriched Brassica napus L.:changes in the nutritional constituents,bioactivities and bioaccessibility
14
作者 Wen Wang Zhixiong He +3 位作者 Ruiying Zhang Min Li Zhenxia Xu Xia Xiang 《Oil Crop Science》 CSCD 2024年第2期81-90,共10页
Selenium(Se)-enriched Brassica napus L.is a valuable organic Se supplement.In this study,the fermentation broth enriched with organic Se(FFS)was prepared using Lactobacillus plantarum to ferment the substrate of Se-en... Selenium(Se)-enriched Brassica napus L.is a valuable organic Se supplement.In this study,the fermentation broth enriched with organic Se(FFS)was prepared using Lactobacillus plantarum to ferment the substrate of Se-enriched Brassica napus L.Significant increases were observed after fermentation in total sugars,reducing sugars,soluble proteins,total phenolic content(TPC),and total flavonoid content(TFC).The organic Se was retained at a concentration of 54.75 mg/g in the freeze-dried sample.Principal component analysis and cluster analysis showed good separation between the FFS and unfermented(FS)groups.Fragrant 2-ethyloxetane had the highest content among all volatiles,while sinapine had the highest content among all phenolic compounds.The fermentation process showed remarkable improvement in the abundance and concentration of volatile compounds and phenolic contents,making FFS exhibit strong antioxidant activity and inhibitory capacity againstα-glucosidase activity.The bioaccessibility of phenolic compounds was significantly greater in FFS compared to FS.ADMET analysis revealed that the majority of phenolic compounds contained in FFS did not exhibit mutagenicity toxicity,hepatotoxicity,skin sensitization,or blood-brain barrier penetration,indicating a favorable level of biosafety.Overall,our study provides a new insight into the further utilization of Se-enriched Brassica napus L.in foods. 展开更多
关键词 Se-enriched Brassica napus L. fermentation Antioxidant activity Inhibitory activity BIOACCESSIBILITY
在线阅读 下载PDF
Screening of glucosinolates degrading lactic acid bacteria and their utilization in rapeseed meal fermentation
15
作者 Yifang Chen Chong Xie +2 位作者 Muhammad Bilal Pei Wang Runqiang Yang 《Grain & Oil Science and Technology》 CAS 2024年第3期168-176,共9页
Rapeseed meal is a promising food ingredient, but its utilization is limited by the presence of some potentially harmful ingredients, such as glucosinolates. Fermentation is a cost-effective method of detoxication but... Rapeseed meal is a promising food ingredient, but its utilization is limited by the presence of some potentially harmful ingredients, such as glucosinolates. Fermentation is a cost-effective method of detoxication but a food-grade starter culture with glucosinolates degradation capacity is required. In this study, 46 strains of lactic acid bacteria from traditional paocai brines were screened for their ability to glucosinolate degradation. The results showed that more than 50% of the strains significantly degraded glucosinolates. Two strains of Lactiplantibacillus(p7 and s7) with high capacity of glucosinolates degradation through producing enzymes were identified. Then,an optimized condition for rapeseed meal fermentation by p7 was established to degrade glucosinolates, which can achieve about 80% degradation. UPLC/Q-TOF-MS analysis showed that the degradation rate of individual glucosinolates was different and the degradation rate of gluconapin and progoitrin in rapeseed meal can reach more than 90%. Meanwhile, fermentation with p7 can improve safety of rapeseed meal by inhibiting the growth of Enterobacteriaceae and improve its nutritional properties by degrading phytic acid. The in vitro digestion experiments showed that the content of glucosinolates in rapeseed meal decreased significantly during gastric digestion. Meanwhile, fermentation with p7 can greatly improve the release of soluble protein and increase the contents of free essential amino acids, such as lysine(increased by 12 folds) and methionine(increased by 10 folds). 展开更多
关键词 Rapeseed meal GLUCOSINOLATES fermentation Lactic acid bacteria In vitro digestion
在线阅读 下载PDF
Insights into Fermentation Technology for Traditional Chinese Medicine:Progress and Applications
16
作者 Chen Zhen Zhang Shupei +3 位作者 Li Jialu Du Wanying Yang Mengyuan Chen Dan 《Animal Husbandry and Feed Science》 CAS 2024年第1期32-41,共10页
Traditional Chinese medicine(TCM)has an exemplary role in the treatment and prevention of diseases.However,the advancement of TCM has been constrained by several factors,including its intricate structure,low active in... Traditional Chinese medicine(TCM)has an exemplary role in the treatment and prevention of diseases.However,the advancement of TCM has been constrained by several factors,including its intricate structure,low active ingredient concentration,prolonged growth cycle,and the dfficulty in artificial cultivation.In recent years,research on the fermentation technology of TCM has increased.This paper provides an overview of the advantages of TCM fermentation technology,including efficiency enhancement and toxicity reduction,the development of new drugs,and the secondary utilization of dregs.Additionally,it discusses the progress of research on the application of fermented TCM in animal husbandry and disease treatment.The aim is to provide theoretical guidance for TCM fermentation technology research and the development of fermented TCM. 展开更多
关键词 fermentation technology Traditional Chinese medicine Animal husbandry APPLICATION Research progress
在线阅读 下载PDF
The Advantages of Methane Production by Combined Fermentation of Lignite and Wheat Straw
17
作者 Jiayuan Gu 《Advances in Bioscience and Biotechnology》 CAS 2024年第1期1-14,共14页
Biogasification of coal is important for clean utilization of coal. Experiments on the fermentation of single lignite, single straw and their mixture were performed to explore the variation characteristics of gas prod... Biogasification of coal is important for clean utilization of coal. Experiments on the fermentation of single lignite, single straw and their mixture were performed to explore the variation characteristics of gas production potential, microbial community and methanogenic metabolic pathways of mixture. Research has shown that mixed fermentation of lignite and straw significantly promoted biomethane production. The abundance of hydrolytic acidifying functional bacteria genera (Sphaerochaeta, Lentimicrobium) in mixed fermentation was higher than that in the fermentation of single lignite and single straw. The abundance of some key CAZy metabolic enzyme gene sequences in mixed fermentation group was increased, which was favorable to improve methane production. Aceticlastic methanogenesis was the most critical methanogenic pathway and acetic acid pathway was more competitive in methanogenic mode during peak fermentation. Macrogenomics provided theoretical support for the claim that mixed fermentation of coal and straw promoted biomethane metabolism, which was potentially valuable in expanding methanogenesis from mixed fermentation of lignite with different biomasses. 展开更多
关键词 LIGNITE Wheat Straw Mixed fermentation Microbial Community Macrogenomics
在线阅读 下载PDF
Effects of bacteriocin-producing Lactiplantibacillus plantarum on bacterial community and fermentation profile of whole-plant corn silage and its in vitro ruminal fermentation,microbiota,and CH_(4) emissions
18
作者 Ziqian Li Samaila Usman +7 位作者 Jiayao Zhang Yixin Zhang Rina Su Hu Chen Qiang Li Mengya Jia Tunde Adegoke Amole Xusheng Guo 《Journal of Animal Science and Biotechnology》 CSCD 2024年第6期2625-2638,共14页
Background Silage is widely used to formulate dairy cattle rations,and the utilization of antibiotics and methane emissions are 2 major problems for a sustainable and environmentally beneficial ruminant production sys... Background Silage is widely used to formulate dairy cattle rations,and the utilization of antibiotics and methane emissions are 2 major problems for a sustainable and environmentally beneficial ruminant production systems.Bacteriocin has received considerable attention because of its potential as an alternative to antibiotics in animal husbandry.However,the impact of bacteriocin-producing lactic acid bacteria on the microbiological conversion process of whole-plant corn silage and rumen fermentation remains limited.The purpose of this study was to assess the effect of 2 classⅡa bacteriocin-producing strains Lactiplantibacillusplontarum ATCC14917 and CICC24194 on bacterial community composition and ensiling profiles of whole-plant corn silage and its in vitro rumen fermentation,microbiota,and CH_(4) emissions.Results Both bacteriocin-producing strains increased the lactic acid concentration in silage fermented for 7 d,whereas the lowest lactic acid was observed in the ATCC14917 inoculated silage fermented for 90 d(P<0.05).The highest DM content was observed in the CICC24194 treatment(P<0.05),and the silages treated with both strains had the lowest DM loss(P<0.05).Bacteriocin-producing strains promoted the growth of Levilactobacillus brevis on d 60of ensiling.In addition,treatment with bacteriocin-producing strains increased the in vitro DM digestibility(P<0.05)and decreased the CH_(4) production(P<0.05).The results of random forest and clustering analyses at the genus level showed that ATCC14917 increased the relative abundance of the influential variable Bacillus compared to that in the control group,whereas CICC24194 decreased the relative abundance of the influential variable Ruminococcaceae UCG-005.The CICC24194 treatment had the lowest total bacterial,fungal,protozoan,and methanogen populations(P<0.05).Conclusions Both classⅡa bacteriocin-producing L.plantarum strains improved the fermentation quality of wholeplant corn silage by regulating the bacterial community composition during ensiling,with CICC24194 being the most effective.Both bacteriocin-producing strains mitigated CH_(4) production and improved digestibility by modulating the interactions among rumen bacteria,protozoa,methanogens,and the composition of fibrolytic bacteria. 展开更多
关键词 Bacteriocin-producing Lactiplantibacillus plantarum fermentation Methane emissions MICROBIOTA RUMEN Whole-plant corn silage
在线阅读 下载PDF
Microbial Diversity and Key Metabolic Pathways in Lignite-Promoted Anaerobic Fermentation with Residual Sludge
19
作者 Yawei Zhang Hongyu Guo +5 位作者 Daping Xia Shufeng Zhao Ze Deng Dan Huang Bing Li Yinchuan Li 《Advances in Bioscience and Biotechnology》 CAS 2024年第11期637-654,共18页
To enhance methane production efficiency in lignite anaerobic digestion and explore new ways for residual sludge utilization, this study employed the co-fermentation of lignite and residual sludge for biomethane conve... To enhance methane production efficiency in lignite anaerobic digestion and explore new ways for residual sludge utilization, this study employed the co-fermentation of lignite and residual sludge for biomethane conversion. The bacterial colony structure, metabolic pathways, and interactions between residual sludge and lignite in anaerobic methanogenic fermentation with different mass ratios were analyzed using macrogenomics sequencing. This study aimed to explore the mechanisms involved in the co-anaerobic fermentation of lignite and residual sludge. The results indicated that the addition of sludge enhanced the metabolic pathways in hydrolysis acidification, hydrogen-acetic acid production, and methanation phases. Notably, the enhancement of acetate- and carbon dioxide-nutrient metabolic pathways was more pronounced, with increased activity observed in related enzymes such as acetic acid kinase (k00925) and acetyl coenzyme synthetase (K01895). This increased enzymatic activity facilitated the microbial conversion of biomethane. The results of the study indicated that the sludge exhibited a promotional effect on the methane produced through the anaerobic fermentation of lignite, providing valuable insights for lignite and residual sludge resource utilization. 展开更多
关键词 LIGNITE Residual Sludge Anaerobic fermentation Bacterial Colony Structure Metabolic Pathway
在线阅读 下载PDF
The Influence of Gratering, Fermentation and Variety on the Physio-Chemical Quality of Cassava Starch
20
作者 Sallu Karteh Georgiana Allie +1 位作者 Joseph Sherman Kamara Amis Cecelia Merchant Nah 《Food and Nutrition Sciences》 CAS 2024年第10期1004-1015,共12页
The study was conducted to determine the influence of gratering and fermentation parameters on the physicochemical quality of starch obtained from two cassava varieties in Sierra Leone (i.e., SLICASS 11 and SLICASS 6)... The study was conducted to determine the influence of gratering and fermentation parameters on the physicochemical quality of starch obtained from two cassava varieties in Sierra Leone (i.e., SLICASS 11 and SLICASS 6). Fresh cassava roots harvested from the Department of Agricultural Engineering were peeled, washed and grated before fermentation and starch extraction. Fermentation was carried out under separate aerobic and anaerobic conditions for a period of Seven days. Physicochemical analyses were conducted at the Postharvest Food and Bioprocess Engineering Laboratory of the Department of Agricultural and Bio-System Engineering, Njala University to determine the solubility, water absorption capacity and swelling power of starch extracts obtained from various experimental treatments. Fermentation method and duration had significant effects on the solubility, water absorption capacity (WAC) and swelling power (SP) of starch extracts. Maximum solubility and WAC were recorded on the fifth day, for both cassava varieties tested, with apparent significant difference resulting from the two gratering bands (i.e., with 1.5-inch nail hole and 4-inch nail hole sizes, respectively). While swelling power increased consistently with temperature for starch obtained from SLICASS-11 variety, an irregular pattern was observed for SLICASS-6 variety. A multiple correlation analysis proposes a significant and weak correlation between temperature, WAC (+0.150) and swelling power (+0.048). Also multiple correlation analyses suggest a significant correlation between fermentation period, the functional properties of starch extracts obtained from both fermentation methods and cassava varieties (i.e., solubility (−0.226), water absorption capacity (+0.301) and swelling power (+0.329)). 展开更多
关键词 fermentation Gratering Band Cassava Variety SOLUBILITY Swelling Power and Water Absorption Capacity
在线阅读 下载PDF
上一页 1 2 63 下一页 到第
使用帮助 返回顶部