期刊文献+
共找到1,231篇文章
< 1 2 62 >
每页显示 20 50 100
A novel method for simulating nuclear explosion with chemical explosion to form an approximate plane wave: Field test and numerical simulation 被引量:1
1
作者 Wei Ming Xiaojie Yang +3 位作者 Yadong Mao Xiang Wang Manchao He Zhigang Tao 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2137-2153,共17页
A nuclear explosion in the rock mass medium can produce strong shock waves,seismic shocks,and other destructive effects,which can cause extreme damage to the underground protection infrastructures.With the increase in... A nuclear explosion in the rock mass medium can produce strong shock waves,seismic shocks,and other destructive effects,which can cause extreme damage to the underground protection infrastructures.With the increase in nuclear explosion power,underground protection engineering enabled by explosion-proof impact theory and technology ushered in a new challenge.This paper proposes to simulate nuclear explosion tests with on-site chemical explosion tests in the form of multi-hole explosions.First,the mechanism of using multi-hole simultaneous blasting to simulate a nuclear explosion to generate approximate plane waves was analyzed.The plane pressure curve at the vault of the underground protective tunnel under the action of the multi-hole simultaneous blasting was then obtained using the impact test in the rock mass at the site.According to the peak pressure at the vault plane,it was divided into three regions:the stress superposition region,the superposition region after surface reflection,and the approximate plane stress wave zone.A numerical simulation approach was developed using PFC and FLAC to study the peak particle velocity in the surrounding rock of the underground protective cave under the action of multi-hole blasting.The time-history curves of pressure and peak pressure partition obtained by the on-site multi-hole simultaneous blasting test and numerical simulation were compared and analyzed,to verify the correctness and rationality of the formation of an approximate plane wave in the simulated nuclear explosion.This comparison and analysis also provided a theoretical foundation and some research ideas for the ensuing study on the impact of a nuclear explosion. 展开更多
关键词 Approximate plane wave Multi-hole simultaneous blasting Chemical explosion Nuclear explosion Pressure sensor inclusion
在线阅读 下载PDF
Numerical Analysis of Explosion Characteristics of Vent Gas From 18650 LiFePO_(4) Batteries With Different States of Charge
2
作者 Shi-Lin Wang Xu Gong +5 位作者 Li-Na Liu Yi-Tong Li Chen-Yu Zhang Le-Jun Xu Xu-Ning Feng Huai-Bin Wang 《电化学(中英文)》 CAS 北大核心 2024年第8期28-35,共8页
The combustion and explosion characteristics of lithium-ion battery vent gas is a key factor in determining the fire hazard of lithium-ion batteries.Investigating the combustion and explosion hazards of lithium-ion ba... The combustion and explosion characteristics of lithium-ion battery vent gas is a key factor in determining the fire hazard of lithium-ion batteries.Investigating the combustion and explosion hazards of lithium-ion batteries vent gas can provide guidance for rescue and protection in explosion accidents in energy storage stations and new energy vehicles,thereby promoting the application and development of lithium-ion batteries.Based on this understanding and combined with previous research on gas production from lithium-ion batteries,this article conducted a study on the combustion and explosion risks of vent gas from thermal runaway of 18650 LFP batteries with different states of charge(SOCs).The explosion limit of mixed gases affected by carbon dioxide inert gas is calculated through the“elimination”method,and the Chemkin-Pro software is used to numerically simulate the laminar flame speed and adiabatic flame temperature of the battery vent gas.And the concentration of free radicals and sensitivity coefficients of major elementary reactions in the system are analyzed to comprehensively evaluate the combustion explosion hazard of battery vent gas.The study found that the 100%SOC battery has the lowest explosion limit of the vent gas.The inhibitory elementary reaction sensitivity coefficient in the reaction system is lower and the concentration of free radicals is higher.Therefore,it has the maximum laminar flame speed and adiabatic flame temperature.The combustion and explosion hazard of battery vent gas increases with the increase of SOC,and the risk of explosion is the greatest and most harmful when SOC reaches 100%.However,the related hazards decrease to varying degrees with overcharging of the battery.This article provides a feasible method for analyzing the combustion mechanism of vent gas from lithium-ion batteries,revealing the impact of SOC on the hazardousness of battery vent gas.It provides references for the safety of storage and transportation of lithium-ion batteries,safety protection of energy storage stations,and the selection of related fire extinguishing agents. 展开更多
关键词 Combustion and explosion characteristics explosion limit Laminar flame speed Adiabatic flame temperature Sensitivity analysis
在线阅读 下载PDF
Experimental investigation of methane explosion fracturing in bedding shales:Load characteristics and three-dimensional fracture propagation 被引量:1
3
作者 Yu Wang Cheng Zhai +5 位作者 Ting Liu Jizhao Xu Wei Tang Yangfeng Zheng Xinyu Zhu Ning Luo 《International Journal of Mining Science and Technology》 SCIE EI CAS CSCD 2024年第10期1365-1383,共19页
Methane in-situ explosion fracturing(MISEF)enhances permeability in shale reservoirs by detonating desorbed methane to generate detonation waves in perforations.Fracture propagation in bedding shale under varying expl... Methane in-situ explosion fracturing(MISEF)enhances permeability in shale reservoirs by detonating desorbed methane to generate detonation waves in perforations.Fracture propagation in bedding shale under varying explosion loads remains unclear.In this study,prefabricated perforated shale samples with parallel and vertical bedding are fractured under five distinct explosion loads using a MISEF experimental setup.High-frequency explosion pressure-time curves were monitored within an equivalent perforation,and computed tomography scanning along with three-dimensional reconstruction techniques were used to investigate fracture propagation patterns.Additionally,the formation mechanism and influencing factors of explosion crack-generated fines(CGF)were clarified by analyzing the morphology and statistics of explosion debris particles.The results indicate that methane explosion generated oscillating-pulse loads within perforations.Explosion characteristic parameters increase with increasing initial pressure.Explosion load and bedding orientation significantly influence fracture propagation patterns.As initial pressure increases,the fracture mode transitions from bi-wing to 4–5 radial fractures.In parallel bedding shale,radial fractures noticeably deflect along the bedding surface.Vertical bedding facilitates the development of transverse fractures oriented parallel to the cross-section.Bifurcation-merging of explosioninduced fractures generated CGF.CGF mass and fractal dimension increase,while average particle size decreases with increasing explosion load.This study provides valuable insights into MISEF technology. 展开更多
关键词 Methane in-situ explosion fracturing Bedding shale Fracture propagation Three-dimensional reconstruction Crack-generated fines Fractal dimension
在线阅读 下载PDF
Analysis of explosion wave interactions and rock breaking effects during dual initiation 被引量:1
4
作者 Renshu Yang Jinjing Zuo +3 位作者 Liwei Ma Yong Zhao Zhen Liu Quanmin Xie 《International Journal of Minerals,Metallurgy and Materials》 SCIE EI CAS CSCD 2024年第8期1788-1798,共11页
In blasting engineering, the location and number of detonation points, to a certain degree, regulate the propagation direction ofthe explosion stress wave and blasting effect. Herein, we examine the explosion wave fie... In blasting engineering, the location and number of detonation points, to a certain degree, regulate the propagation direction ofthe explosion stress wave and blasting effect. Herein, we examine the explosion wave field and rock breaking effect in terms of shockwave collision, stress change of the blast hole wall in the collision zone, and crack propagation in the collision zone. The produced shockwave on the collision surface has an intensity surpassing the sum of the intensities of the two colliding explosion shock waves. At the collisionlocation, the kinetic energy is transformed into potential energy with a reduction in particle velocity at the wave front and the wavefront pressure increases. The expansion form of the superposed shock wave is dumbbell-shaped, the shock wave velocity in the collisionarea is greater than the radial shock wave velocity, and the average propagation angle of the explosion shock waves is approximately 60°.Accordingly, a fitted relationship between blast hole wall stress and explosion wave propagation angle in the superposition area is plotted.Under the experimental conditions, the superimposed explosion wave stress of the blast hole wall is approximately 1.73 times the singleexplosionwave incident stress. The results of the model test and numerical simulations reveal that large-scale radial fracture cracks weregenerated on the blast hole wall in the superimposed area, and the width of the crack increased. The width of the large-scale radial fracturecracks formed by a strong impact is approximately 5% of the blast hole length. According to the characteristics of blast hole wallcompression, the mean peak pressures of the strongly superimposed area are approximately 1.48 and 1.84 times those of the weakly superimposedand nonsuperimposed areas, respectively. 展开更多
关键词 BLASTING shock wave collision high-speed schlieren system crack fracture characteristic explosion wave
在线阅读 下载PDF
Hydromechanical characterization of gas transport amidst uncertainty for underground nuclear explosion detection 被引量:1
5
作者 Wenfeng Li Chelsea W.Neil +3 位作者 J William Carey Meng Meng Luke P.Frash Philip H.Stauffer 《Journal of Rock Mechanics and Geotechnical Engineering》 SCIE CSCD 2024年第6期2019-2032,共14页
Given the challenge of definitively discriminating between chemical and nuclear explosions using seismic methods alone,surface detection of signature noble gas radioisotopes is considered a positive identification of ... Given the challenge of definitively discriminating between chemical and nuclear explosions using seismic methods alone,surface detection of signature noble gas radioisotopes is considered a positive identification of underground nuclear explosions(UNEs).However,the migration of signature radionuclide gases between the nuclear cavity and surface is not well understood because complex processes are involved,including the generation of complex fracture networks,reactivation of natural fractures and faults,and thermo-hydro-mechanical-chemical(THMC)coupling of radionuclide gas transport in the subsurface.In this study,we provide an experimental investigation of hydro-mechanical(HM)coupling among gas flow,stress states,rock deformation,and rock damage using a unique multi-physics triaxial direct shear rock testing system.The testing system also features redundant gas pressure and flow rate measurements,well suited for parameter uncertainty quantification.Using porous tuff and tight granite samples that are relevant to historic UNE tests,we measured the Biot effective stress coefficient,rock matrix gas permeability,and fracture gas permeability at a range of pore pressure and stress conditions.The Biot effective stress coefficient varies from 0.69 to 1 for the tuff,whose porosity averages 35.3%±0.7%,while this coefficient varies from 0.51 to 0.78 for the tight granite(porosity<1%,perhaps an underestimate).Matrix gas permeability is strongly correlated to effective stress for the granite,but not for the porous tuff.Our experiments reveal the following key engineering implications on transport of radionuclide gases post a UNE event:(1)The porous tuff shows apparent fracture dilation or compression upon stress changes,which does not necessarily change the gas permeability;(2)The granite fracture permeability shows strong stress sensitivity and is positively related to shear displacement;and(3)Hydromechanical coupling among stress states,rock damage,and gas flow appears to be stronger in tight granite than in porous tuff. 展开更多
关键词 Underground nuclear explosion uncertainty quantification Radionuclide transport Biot effective stress coefficient Fracture permeability Matrix permeability
在线阅读 下载PDF
Explosion resistance performance of reinforced concrete box girder coated with polyurea:Model test and numerical simulation
6
作者 Guangpan Zhou Rong Wang +2 位作者 Mingyang Wang Jianguo Ding Yuye Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期1-18,共18页
To study the anti-explosion protection effect of polyurea coating on reinforced concrete box girder,two segmental girder specimens were made at a scale of 1:3,numbered as G(without polyurea coating)and PCG(with polyur... To study the anti-explosion protection effect of polyurea coating on reinforced concrete box girder,two segmental girder specimens were made at a scale of 1:3,numbered as G(without polyurea coating)and PCG(with polyurea coating).The failure characteristics and dynamic responses of the specimens were compared through conducting explosion tests.The reliability of the numerical simulation using LS-DYNA software was verified by the test results.The effects of different scaled distances,reinforcement ratios,concrete strengths,coating thicknesses and ranges of polyurea were studied.The results show that the polyurea coating can effectively enhance the anti-explosion performance of the girder.The top plate of middle chamber in specimen G forms an elliptical penetrating hole,while that in specimen PCG only shows a very slight local dent.The peak vertical displacement and residual displacement of PCG decrease by 74.8% and 73.7%,respectively,compared with those of specimen G.For the TNT explosion with small equivalent,the polyurea coating has a more significant protective effect on reducing the size of fracture.With the increase of TNT equivalent,the protective effect of polyurea on reducing girder displacement becomes more significant.The optimal reinforcement ratio,concrete strength,thickness and range of polyurea coating were also drawn. 展开更多
关键词 Explosive load explosion resistance performance Model test POLYUREA Concrete box girder Numerical simulation
在线阅读 下载PDF
Tuning microstructures of TC4 ELI to improve explosion resistance
7
作者 Changle Zhang Yangwei Wang +6 位作者 Lin Wang Zixuan Ning Guoju Li Dongping Chen Zhi-Wei Yan Yuchen Song Xucai Wang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第3期78-99,共22页
A reasonable heat treatment process for TC4 ELI titanium alloy is crucial to tune microstructures to improve its explosion resistance.However,there is limited investigation on tuning microstructures of TC4 ELI to impr... A reasonable heat treatment process for TC4 ELI titanium alloy is crucial to tune microstructures to improve its explosion resistance.However,there is limited investigation on tuning microstructures of TC4 ELI to improve explosion resistance.Moreover,the current challenge is quantifying microstructural changes'effects on explosion resistance and incorporating microstructural changes into finite element models.This work aims to tune microstructures to improve explosion resistance and elucidate their anti-explosion mechanism,and find a suitable method to incorporate microstructural changes into finite element models.In this work,we systematically study the deformation and failure characteristics of TC4 ELI plates with varying microstructures using an air explosion test and LS-DYNA finite element modeling.The Johnson-Cook(JC)constitutive parameters are used to quantify the effects of microstructural changes on explosion resistance and incorporate microstructural changes into finite element models.Because of the heat treatment,one plate has equiaxed microstructure and the other has bimodal microstructure.The convex of the plate after the explosion has a quadratic relationship with the charge mass,and the simulation results demonstrate high reliability,with the error less than 17.5%.Therefore,it is feasible to obtain corresponding JC constitutive parameters based on the differences in microstructures and mechanical properties and characterize the effects of microstructural changes on explosion resistance.The bimodal target exhibits excellent deformation resistance.The response of bimodal microstructure to the shock wave may be more intense under explosive loading.The well-coordinated structure of the bimodal target enhances its resistance to deformation. 展开更多
关键词 MICROSTRUCTURE Finite element modelling Parameter optimization Failure characteristics explosion resistance
在线阅读 下载PDF
Explosion damage effects of aviation kerosene storage tank under strong ignition
8
作者 Shixiang Song Cheng Wang +1 位作者 Boyang Qiao Gongtian Gu 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第7期27-38,共12页
In order to study the blast damage effects of aviation kerosene storage tanks,the out-field explosion experiments of 8 m3fixed-roof tanks were carried out.The fragments,shock wave and fireball thermal radiation of the... In order to study the blast damage effects of aviation kerosene storage tanks,the out-field explosion experiments of 8 m3fixed-roof tanks were carried out.The fragments,shock wave and fireball thermal radiation of the tank in the presence of bottom oil,half oil and full oil,as well as empty tank,were investigated under internal explosion by various TNT charge contents(1.8 kg,3.5 kg and 6.2 kg).The results showed that the tank roof was the only fragment produced,and the damage forms could be divided into three types.The increase of TNT charge content and oil volume enlarged the deformation of the tank,while the hole ratio presented a trend of increase first and then decrease.The H_r,maxand V_(max)values positively increased as increasing the TNT charge content and oil volume(from empty to half oil),but decreased in full oil.The Pmaxvalues had a progressive increase with the increment of TNT charge content,but not the case with the increase in oil volumes.The development of fireball was divided into three stages:tank roof‘towed'flame,jet flow flame tumbling and rising,and jet flow flame extinguishing.The Dmaxand Hf,maxvalues both increased as increasing TNT charge content and oil volumes.The oscillation phenomenon of fireball temperature was observed in the cooling process.The average temperature of fireball surface was positively correlated with TNT charge content,and negatively correlated with oil volumes. 展开更多
关键词 Aviation kerosene Storage tank Internal explosion Shock wave FIREBALL
在线阅读 下载PDF
Analysis model for damage of reinforced bars in RC beams under contact explosion
9
作者 Chaozhi Yang Zhengxiang Huang +2 位作者 Xin Jia Wei Shang Jian Zhang 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第11期104-118,共15页
The load-bearing capacity of reinforced concrete(RC) beams primarily relies on internal reinforced bars.However, limited research has been conducted on the dynamic response of these bars. To address this gap, this stu... The load-bearing capacity of reinforced concrete(RC) beams primarily relies on internal reinforced bars.However, limited research has been conducted on the dynamic response of these bars. To address this gap, this study has established an analytical model using dimensional analysis for calculating the deformation of reinforced bars within RC beams subjected to contact explosion. Comparison with experimental data reveals that the model has a relative error of 5.22%, effectively reflecting the deformation of reinforced bars. Additionally, based on this model, the study found that while concrete does influence the deformation of reinforced bars, this influence can be disregarded in comparison to the material properties of the bars themselves. The findings of this study have implications for calculating the residual load-bearing capacity of damaged RC beams, evaluating the extent of damage to RC beams after blast loading, and providing guidance for the blast-resistant design of RC structures. 展开更多
关键词 Reinforced concrete beam Contact explosion Reinforced bar Damage analysis Residual load-bearing capacity
在线阅读 下载PDF
Study on theoretical model for electrical explosion resistivity of Al/Ni reactive multilayer foil
10
作者 Zehao Wang Tao Wang +2 位作者 Pengfei Xue Mingyu Li Qingxuan Zeng 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第2期348-356,共9页
Al/Ni reactive multilayer foil(RMF)possesses excellent comprehensive properties as a promising substitute for traditional Cu bridge.A theoretical resistivity model of Al/Ni RMF was developed to guide the optimization ... Al/Ni reactive multilayer foil(RMF)possesses excellent comprehensive properties as a promising substitute for traditional Cu bridge.A theoretical resistivity model of Al/Ni RMF was developed to guide the optimization of EFIs.Al/Ni RMF with different bilayer thicknesses and bridge dimensions were prepared by MEMS technology and electrical explosion tests were carried out.According to physical and chemical reactions in bridge,the electrical explosion process was divided into 5 stages:heating of condensed bridge,vaporization and diffusion of Al layers,intermetallic combination reaction,intrinsic explosion,ionization of metal gases,which are obviously shown in measured voltage curve.Effects of interface and grain boundary scattering on the resistivity of film metal were considered.Focusing on variations of substance and state,the resistivity was developed as a function of temperature at each stage.Electrical explosion curves were calculated by this model at different bilayer thicknesses,bridge dimensions and capacitor voltages,which showed an excellent agreement with experimental ones. 展开更多
关键词 Al/Ni reactive multilayer foil Electrical explosion Resistivity model Phase transition CALCULATION
在线阅读 下载PDF
Anti-explosion performance and dynamic response of an innovative multi-layer composite explosion containment vessel
11
作者 Zhen Wang Heng Chen +3 位作者 Qi Yuan Wenbin Gu Xingbo Xie Hongwei Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第6期105-121,共17页
An innovative multi-layer composite explosion containment vessel(CECV)utilizing a sliding steel platealuminum honeycomb-fiber cloth sandwich is put forward to improve the anti-explosion capacity of a conventional sing... An innovative multi-layer composite explosion containment vessel(CECV)utilizing a sliding steel platealuminum honeycomb-fiber cloth sandwich is put forward to improve the anti-explosion capacity of a conventional single-layer explosion containment vessel(SECV).Firstly,a series of experiments and finite element(FE)simulations of internal explosions are implemented to understand the basic anti-explosion characteristics of a SECV and the rationality of the computational models and methods is verified by the comparison between the experimental results and simulation results.Based on this,the CECV is designed in detail and a variety of FE simulations are carried out to investigate effects of the sandwich structure,the explosive quantity and the laying mode of the fiber cloth on anti-explosion performance and dynamic response of the CECV under internal explosions.Simulation results indicate that the end cover is the critical position for both the SECV and CECV.The maximum pressure of the explosion shock wave and the maximum strain of the CECV can be extremely declined compared to those of the SECV.As a result,the explosive quantity the CECV can sustain is up to 20 times of that the SECV can sustain.Besides,as the explosive quantity increases,the internal pressure of the CECV keeps growing and the plastic deformation and failure of the sandwich structure become more and more severe,yielding plastic strain of the CECV in addition to elastic strain.The results also reveal that the laying angles of the fiber cloth's five layers have an impact on the anti-explosion performance of the CECV.For example,the CECV with fiber cloth layered in 0°/45°/90°/45°/0°mode has the optimal anti-capacity,compared to 0°/0°/0°/0°/0°and 0°/30°/60°/30°/0°modes.Overall,owing to remarkable anti-explosion capacity,this CECV can be regarded as a promising candidate for explosion resistance. 展开更多
关键词 Explosive container Honeycomb-fiber cloth ANTI-explosion Aluminum honeycomb core COMPOSITE
在线阅读 下载PDF
Influences of oscillation on the physical stability and explosion characteristics of solid-liquid mixed fuel
12
作者 Chi Zhang Ge Song +2 位作者 Hui Guo Jiafan Ren Chunhua Bai 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2024年第10期191-198,共8页
The stratification phenomenon resulting from differences in the physical properties of solid-liquid components seriously affect the final combustion and explosion characteristics of mixed fuel under the action of osci... The stratification phenomenon resulting from differences in the physical properties of solid-liquid components seriously affect the final combustion and explosion characteristics of mixed fuel under the action of oscillation.The effects of oscillation on the physical stability of mixed fuel with two solid-liquid ratios and three liquid component distribution ratios have been investigated using a self-designed experimental system at oscillation frequencies of 60-300 r/min.The explosion characteristics of mixed fuel before and after oscillation are gained from a 20 L spherical explosion container system.When the mass ratio of liquid components is controlled at 66.9%,64.7%,62.6%the final explosion characteristics are stable,with a maximum difference of only 0.71%.The volume of liquid fuel precipitation increases with increasing oscillation frequency when the mass ratio of liquid components reaches 71.7%,69.6%,67.7%.The fuel explosion overpressure after oscillation decreases with increasing liquid precipitation volume,and the repeatability is poor,with a maximum standard deviation of 82.736,which is much higher than the ratio without stratification.Properly controlling the mass ratio of liquid components of the mixed fuel can effectively combat the impact of oscillation on the physical state and maintain the stability of the final explosion characteristics. 展开更多
关键词 Solid-liquid mixed fuel Physical stability explosion characteristics
在线阅读 下载PDF
Dynamic performance assessment of shallow buried circular tunnels under explosion hazard
13
作者 ZHANG Chen-long ZHANG Dong-ming +1 位作者 HUANG Zhong-kai HUANG Zhen 《Journal of Central South University》 CSCD 2024年第11期3868-3884,共17页
In recent years,the escalation in accidental explosions has emerged as a formidable threat to tunnel infrastructures.Therefore,it is of great significance to conduct a dynamic performance analysis of the tunnels,to im... In recent years,the escalation in accidental explosions has emerged as a formidable threat to tunnel infrastructures.Therefore,it is of great significance to conduct a dynamic performance analysis of the tunnels,to improve the safety and maintain the functionality of underground transport hubs.To this end,this study proposes a dynamic performance assessment framework to assess the extent of damage of shallow buried circular tunnels under explosion hazards.First,the nonlinear dynamic finite element numerical model of soil-tunnel interaction system under explosion hazard was established and validated.Then,based on the validated numerical model,an explosion intensity(EI)considering both explosion equivalent and relative distance was used to further analyze the dynamic response characteristics under typical explosion conditions.Finally,this study further explored the influence of the integrity and strength of the surrounding soil,concrete strength,lining thickness,rebar strength,and rebar rate on the tunnel dynamic performance.Our results show that the dynamic performance assessment framework proposed for shallow circular tunnels fully integrates the coupling effects of explosion equivalent and distance,and is able to accurately measure the degree of damage sustained by these structures under different EI.This work contributes to designing and managing tunnels and underground transport networks based on dynamic performance,thereby facilitating decision-making and efficient allocation of resources by consultants,operators,and stakeholders. 展开更多
关键词 TUNNELS explosion hazard dynamic performance assessment parametric analysis numerical study
在线阅读 下载PDF
Pager Explosion:Cybersecurity Insights and Afterthoughts
14
作者 Chuan Sheng Wanlun Ma +5 位作者 Qing-Long Han Wei Zhou Xiaogang Zhu Sheng Wen Yang Xiang Fei-Yue Wang 《IEEE/CAA Journal of Automatica Sinica》 CSCD 2024年第12期2359-2362,共4页
PAGER EXPLOSION:THE EVENT.THE 2024 Lebanon pager explosions represent one of the most unexpected and devastating technological incidents in recent history.On September 17 and 18,2024,thousands of pagers and walkie-tal... PAGER EXPLOSION:THE EVENT.THE 2024 Lebanon pager explosions represent one of the most unexpected and devastating technological incidents in recent history.On September 17 and 18,2024,thousands of pagers and walkie-talkies exploded simultaneously across Lebanon and parts of Syria,resulting in 42 deaths and more than 3500 injuries.These handheld communication devices,previously regarded as secure and low-profile,were rigged with concealed explosives and remotely triggered by attackers. 展开更多
关键词 INJURIES THOUGHTS explosion
在线阅读 下载PDF
The Tension Cosmology, Largest Cosmic Structures and Explosions of Supernovae from SST
15
作者 Sylwester Kornowski 《Journal of High Energy Physics, Gravitation and Cosmology》 CAS 2024年第3期1029-1044,共16页
Here, using the Scale-Symmetric Theory (SST) we explain the cosmological tension and the origin of the largest cosmic structures. We show that a change in value of strong coupling constant for cold baryonic matter lea... Here, using the Scale-Symmetric Theory (SST) we explain the cosmological tension and the origin of the largest cosmic structures. We show that a change in value of strong coupling constant for cold baryonic matter leads to the disagreement in the galaxy clustering amplitude, quantified by the parameter S8. Within the same model we described the Hubble tension. We described also the mechanism that transforms the gravitational collapse into an explosion—it concerns the dynamics of virtual fields that lead to dark energy. Our calculations concern the Type Ia supernovae and the core-collapse supernovae. We calculated the quantized masses of the progenitors of supernovae, emitted total energy during explosion, and we calculated how much of the released energy was transferred to neutrinos. Value of the speed of sound in the strongly interacting matter measured at the LHC confirms that presented here model is correct. Our calculations show that the Universe is cyclic. 展开更多
关键词 Scale-Symmetric Theory Tension Cosmology Coupling Constants Parameters σ8 and S8 Largest Cosmic Structures Dark Energy Supernova explosion Cyclic Universe
在线阅读 下载PDF
Enhanced enzymatic sugar production from corn stover by combination of water extraction and glycerol-assisted instant catapult steam explosion
16
作者 Fengqin Wang Hongli Dong +6 位作者 Weiwei Yu Yinling Gao Guotao Mao Yanxia An Hui Xie Andong Song Zhanying Zhang 《Bioresources and Bioprocessing》 2024年第1期436-449,共14页
Glycerol-assisted instant catapult steam explosion(ICSE)of lignocellulose is an effective pretreatment method for enhancing sugar production compared to glycerol-free ICSE.In this study,glycerol-assisted ICSE of corn ... Glycerol-assisted instant catapult steam explosion(ICSE)of lignocellulose is an effective pretreatment method for enhancing sugar production compared to glycerol-free ICSE.In this study,glycerol-assisted ICSE of corn stover was studied in order to understand the reaction mechanisms and further optimize the process.Results showed that water extraction of corn stover prior to ICSE reduced pseudo-lignin formation.The combination of water extraction and glycerol-assisted ICSE led to the formation of lignin with a lower molecular weight(Mw)of 2851 g/mol than 3521 g/mole of that from the combination of water extraction and glycerol-free ICSE.1H-13C NMR analysis revealed that glycerol likely reacted with lignin carboxylic OHs through esterification while etherification of aliphatic OHs was not observed in ICSE.These lignin analyses indicated that glycerol protected lignin from condensation/repolymerization during glycerol-assisted ICSE.Enzymatic hydrolysis results showed that without water extraction increasing glycerol usage from 0.2 kg/kg stover to 0.4 kg/kg stover improved glucan digestibility to 78%but further increase to 0.5 kg/kg stover reduced glucan digestibility.In addition,at the glycerol usage of 0.2-0.4 kg/kg stover,washing of pretreated stover for removal of glycerol and other biomass-derived compounds did not improve glucan digestibility compared to unwashed ones.Combination of water extraction and glycerol-assisted ICSE led to a high glucan digestibility of 89.7%and a total glucose yield of 25.5 g glucose/100 g stover,which were 30.1%and 7.5 g/100 g stover higher than those derived from glycerol-free ICSE of stover,respectively.Since glycerol is a low-cost carbon source,the resulting enzymatic hydrolysate that contained both glucose and glycerol may be directly used to produce bioproducts by microbial fermentation. 展开更多
关键词 GLYCEROL Steam explosion Enzymatic digestibility Water extraction LIGNIN
在线阅读 下载PDF
Preparation of Oat Bran Dietary Fiber by Steam Explosion and Its Functional Structure Characteristics
17
作者 Xueliang PANG Lei WANG +6 位作者 Yang GAO Ruihuan DU Huihui CAO Yanhua YAN Luman HUO Baiqin ZHENG Shuo YANG 《Agricultural Biotechnology》 2024年第6期52-54,62,共4页
[Objectives]This study was conducted to investigate the process conditions,function and structural characteristics of oat bran dietary fiber prepared by steam explosion(SE).[Methods]With oat bran as the raw material,t... [Objectives]This study was conducted to investigate the process conditions,function and structural characteristics of oat bran dietary fiber prepared by steam explosion(SE).[Methods]With oat bran as the raw material,the technical parameters for preparing dietary fiber by steam explosion were studied,and the functional and structural characteristics of DF before and after modification were discussed.[Results]The optimum conditions for extracting DF from oat bran by SE modification were steam explosion pressure of 0.6 MPa and holding time of 4 min.The extraction rate of DF reached 33.9%.The solubility,water holding capacity,oil holding capacity and swelling force of Control-DF were 78.35%,2.25 g/g,1.55 g/g and 3.05 ml/g,respectively,and those of SE-DF were 95.69%,3.28 g/g,2.18 g/g and 5.98 ml/g,respectively.After SE treatment,the scavenging rates of oat bran DF on DPPH,ABTS,O-2·and·OH were significantly higher than those of untreated samples.The scavenging ability on free radicals was enhanced.The scavenging rates of Control-DF on DPPH,ABTS,O-2·and·OH were 43.72%,50.26%,31.02%and 39.25%,respectively,and those of SE-DF were 70.25%,73.21%and 63.69%59.32%,respectively.The surface of modified DF showed an obvious honeycomb structure.[Conclusions]This study can provide reference for functional modifications and utilization of dietary fiber from oat bran. 展开更多
关键词 Oat bran Dietary fiber Steam explosion Functional and structural property
在线阅读 下载PDF
Shock wave and bubble characteristics of underwater array explosion of charges 被引量:7
18
作者 Hong-Wei Hu Pu Song +2 位作者 Shuang-feng Guo Hai-yun Feng Dao-kui Li 《Defence Technology(防务技术)》 SCIE EI CAS CSCD 2022年第8期1445-1453,共9页
In this study, we focused on the effect of the underwater explosion parameters of multi-point array explosion. The shock wave and bubble parameters of aggregate charge, two charges, and four charges were measured thro... In this study, we focused on the effect of the underwater explosion parameters of multi-point array explosion. The shock wave and bubble parameters of aggregate charge, two charges, and four charges were measured through an underwater explosion test, and their influence on the explosion power field of charge quantity and array distance was analyzed. Results show that the multi-shock wave collision of array explosion can be approximated to a linear superposition, and the interaction of delayed shock wave can be deemed as the increase of the shock wave baseline. Shock wave focusing and delayed superposition increase the shock wave peak pressure. Compared with the aggregate charge, the greater the number of array explosion points is, the higher the impulse and the gain of the bubble peak pressure are. At the same array distance, the smaller the charge quantity is, the higher the bubble impulse will be. At the same charge quantity, the smaller the array distance is, the higher the bubble impulse will be. The bubble period decreases gradually with the increase of the charge quantity, but the test orientation has little effect on the bubble period. 展开更多
关键词 explosion mechanics Underwater explosion Array explosion Shock waveBubble
在线阅读 下载PDF
Simulation Analysis of Indoor Gas Explosion Damage 被引量:4
19
作者 钱新明 陈林顺 冯长根 《Journal of Beijing Institute of Technology》 EI CAS 2003年第3期286-289,共4页
The influence factors and process of indoor gas explosion are studied with AutoReaGas explosion simulator. The result shows that venting pressure has great influence on the indoor gas explosion damage. The higher the ... The influence factors and process of indoor gas explosion are studied with AutoReaGas explosion simulator. The result shows that venting pressure has great influence on the indoor gas explosion damage. The higher the venting pressure is, the more serious the hazard consequence will be. The ignition location has also evident effect on the gas explosion damage. The explosion static overpressure would not cause major injury to person and serious damage to structure in the case of low venting pressure (lower than 2 kPa). The high temperature combustion after the explosion is the major factor to person injury in indoor gas explosion accidents. 展开更多
关键词 indoor gas explosion explosion simulation explosion overpressure high temperature combustion
在线阅读 下载PDF
Effect of particle size of coal dust on explosion pressure 被引量:1
20
作者 JIAO Feng-yuan ZHANG Hua-rong +1 位作者 CAO Wei-guo FANG Fan 《Journal of Measurement Science and Instrumentation》 CAS CSCD 2019年第3期223-225,共3页
The effect of the particle size of coal dust on explosion pressure and the rising rate of explosion pressure is studied. Three coal dusts from Lingan Coal Mine in Canada and Datong Coal Mine in China are selected to t... The effect of the particle size of coal dust on explosion pressure and the rising rate of explosion pressure is studied. Three coal dusts from Lingan Coal Mine in Canada and Datong Coal Mine in China are selected to test. The influence of particle size on the maximum explosion pressure P max and maximum pressure rising rate (d p /d t ) max of each coal dust was tested experimentally. The results indicate that with the decrease of particle size of coal dusts, explosion pressure increases on condition of the same concentration. If the concentration of coal dust is different, the maximum explosion pressure appears at the concentration of 500 g/m^3. The smaller the particle size of coal dusts, the larger the rising rate of explosion pressure of coal dust. When the concentration of coal dust is 500 g/m^3, the rising rate of explosion pressure of each coal dust is the maximum. 展开更多
关键词 coal dust explosion pressure explosion pressure rising rate dust explosion particle size
在线阅读 下载PDF
上一页 1 2 62 下一页 到第
使用帮助 返回顶部