Several studies have shown that activation of unfolded protein response and endoplasmic reticulum(ER)stress plays a crucial role in severe cerebral ischemia/reperfusion injury.Autophagy occurs within hours after cereb...Several studies have shown that activation of unfolded protein response and endoplasmic reticulum(ER)stress plays a crucial role in severe cerebral ischemia/reperfusion injury.Autophagy occurs within hours after cerebral ischemia,but the relationship between ER stress and autophagy remains unclear.In this study,we established experimental models using oxygen-glucose deprivation/reoxygenation in PC12 cells and primary neurons to simulate cerebral ischemia/reperfusion injury.We found that prolongation of oxygen-glucose deprivation activated the ER stress pathway protein kinase-like endoplasmic reticulum kinase(PERK)/eukaryotic translation initiation factor 2 subunit alpha(e IF2α)-activating transcription factor 4(ATF4)-C/EBP homologous protein(CHOP),increased neuronal apoptosis,and induced autophagy.Furthermore,inhibition of ER stress using inhibitors or by si RNA knockdown of the PERK gene significantly attenuated excessive autophagy and neuronal apoptosis,indicating an interaction between autophagy and ER stress and suggesting PERK as an essential target for regulating autophagy.Blocking autophagy with chloroquine exacerbated ER stress-induced apoptosis,indicating that normal levels of autophagy play a protective role in neuronal injury following cerebral ischemia/reperfusion injury.Findings from this study indicate that cerebral ischemia/reperfusion injury can trigger neuronal ER stress and promote autophagy,and suggest that PERK is a possible target for inhibiting excessive autophagy in cerebral ischemia/reperfusion injury.展开更多
BACKGROUND Plantamajoside(PMS)has shown potential in mitigating cell damage caused by high glucose(HG)levels.Despite this,the precise therapeutic effects of PMS on type 2 diabetes mellitus(T2DM)and the underlying regu...BACKGROUND Plantamajoside(PMS)has shown potential in mitigating cell damage caused by high glucose(HG)levels.Despite this,the precise therapeutic effects of PMS on type 2 diabetes mellitus(T2DM)and the underlying regulatory mechanisms require further exploration.AIM To investigate PMS therapeutic effects on T2DM in mice and elucidate its mechanisms of action through in vivo and in vitro experiments.METHODS An in vitro damage model of MIN6 cells was established using HG and palmitic acid(PA).PMS's protective effect on cell damage was assessed.Next,transcriptomics was employed to examine how PMS treatment affects gene expression of MIN6 cells.Furthermore,the effect of PMS on protein processing in endoplasmic reticulum and apoptosis pathways was validated.A T2DM mouse model was used to validate the therapeutic effects and mechanisms of PMS in vivo.RESULTS PMS intervention ameliorated cell injury in HG+PA-induced MIN6 cell damage.Transcriptomic analysis revealed that protein processing in the endoplasmic reticulum and apoptosis pathways were enriched in cells treated with PMS,with significant downregulation of the gene Dnajc1.Further validation indicated that PMS significantly inhibited the expression of apoptosis-related factors(Bax,CytC)and endoplasmic reticulum stress(ERS)-related factors[ATF6,XBP1,Ddit3(CHOP),GRP78],while promoting the expression of Bcl-2 and Dnajc1.Additionally,the inhibitory effects of PMS on ERS and apoptosis were abolished upon Dnajc1 silencing.Furthermore,in vivo experiments demonstrated that PMS intervention effectively improved pancreatic damage,suppressed the expression of apoptosis-related factors(Bax,CytC),and ERS-related factors[ATF6,XBP1,Ddit3(CHOP),GRP78],while promoting the expression of Bcl-2 and Dnajc1 in a T2DM model mice.CONCLUSION PMS intervention could alleviate pancreatic tissue damage effectively.The mechanism of action involves Dnajc1 activation,which subsequently inhibits apoptosis and ERS,ameliorating damage to pancreaticβ-cells.展开更多
17α-methyltestosterone(17α-MT)is an emerging pollutant,which is harmful to the endocrine system and reproduction of fish.We investigated the effects of different concentrations of 17α-MT(0,5,30,60,and 100 mg/kg)on ...17α-methyltestosterone(17α-MT)is an emerging pollutant,which is harmful to the endocrine system and reproduction of fish.We investigated the effects of different concentrations of 17α-MT(0,5,30,60,and 100 mg/kg)on endoplasmic reticulum stress(ERS)and apoptosis in the liver of Takifugu fasciatus.Results show that:(1)with the increase of 17α-MT treatment concentration,liver transaminases(alanine aminotransferase;aspartate aminotransferase)and the mRNA expression of ERS marker genes(glucose-regulated protein 78;calreticulin)of T.fasciatus were significantly increased compared with the control group(P<0.05);(2)the activity of succinate dehydrogenase(SDH),Caspase3 and Caspase9 in the liver of T.fasciatus increased with the increase of 17α-MT concentration compared with the control group(P<0.05);(3)by using 4-phenylbutyricacid(4-PBA)inhibitors to stimulate ERS through in vitro experiments,the expression of ERS and apoptosis-related genes significantly decreased(P<0.05),and the apoptosis rate of T.fasciatus hepatocytes was significantly inhibited(P<0.05)under 17α-MT treatment.This study confirmed that ERS played an important role in the induction of apoptosis in the hepatocytes of T.fasciatus,which enriched the ecotoxicological information of environmental androgens.展开更多
Foods and animal feeds frequently become contaminated with the nephrotoxic ochratoxin A(OTA).Our prior research has indicated that ursolic acid(UA),which is widely present in fruits and medicinal plants,has the potent...Foods and animal feeds frequently become contaminated with the nephrotoxic ochratoxin A(OTA).Our prior research has indicated that ursolic acid(UA),which is widely present in fruits and medicinal plants,has the potential to alleviate nephrotoxicity triggered by OTA.Additionally,excessive induction of endoplasmic reticulum(ER)-phagy exacerbates OTA-induced apoptosis.Therefore,further investigation is essential to comprehend whether UA can mitigate OTA-induced apoptosis by influencing ER-phagy.This objective is accomplished through a series of experiments involving assessments of cell viability,apoptosis,fluorescence microscopy,and western blot analysis.The outcomes of these experiments reveal that pre-treatment with 4μmol/L UA for 2 h can markedly reverse the elevated apoptotic rate,the co-localization of ER and lysosomes,and the protein expressions of GRP78,p-eIF2α,Chop,Bax,and Bak,as well as the reduced cell viability and the protein expressions of Lonp1,Trap1,p62,Tex264,FAM134B,Bcl-2,and Bcl-xl,all caused by exposure to 1μmol/L OTA for 24 h in human proximal tubule epithelial-originated kidney-2(HK-2)cells(P<0.05).Interestingly,the increased expression of LC3B-II induced by OTA is further amplified by UA pre-treatment(P<0.05).In conclusion,OTA triggers a harmful feedback loop between ER stress(ERS)and excessive ER-phagy,thereby further promoting ERS-and mitochondrial-mediated apoptosis in vitro.However,this effect is significantly mitigated by UA through the inhibition of autophagosome-lysosome fusion,consequently blocking the excessive ER-phagic flux.展开更多
Ferroptosis is a form of non-apoptotic programmed cell death,and its mechanisms mainly involve the accumulation of lipid peroxides,imbalance in the amino acid antioxidant system,and disordered iron metabolism.The prim...Ferroptosis is a form of non-apoptotic programmed cell death,and its mechanisms mainly involve the accumulation of lipid peroxides,imbalance in the amino acid antioxidant system,and disordered iron metabolism.The primary organelle responsible for coordinating external challenges and internal cell demands is the endoplasmic reticulum,and the progression of inflammatory diseases can trigger endoplasmic reticulum stress.Evidence has suggested that ferroptosis may share pathways or interact with endoplasmic reticulum stress in many diseases and plays a role in cell survival.Ferroptosis and endoplasmic reticulum stress may occur after ischemic stroke.However,there are few reports on the interactions of ferroptosis and endoplasmic reticulum stress with ischemic stroke.This review summarized the recent research on the relationships between ferroptosis and endoplasmic reticulum stress and ischemic stroke,aiming to provide a reference for developing treatments for ischemic stroke.展开更多
β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unkno...β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unknown whetherβ-sitosterol treatment reduces the effects of ischemic stroke.Here we found that,in a mouse model of ischemic stroke induced by middle cerebral artery occlusion,β-sitosterol reduced the volume of cerebral infarction and brain edema,reduced neuronal apoptosis in brain tissue,and alleviated neurological dysfunction;moreover,β-sitosterol increased the activity of oxygen-and glucose-deprived cerebral cortex neurons and reduced apoptosis.Further investigation showed that the neuroprotective effects ofβ-sitosterol may be related to inhibition of endoplasmic reticulum stress caused by intracellular cholesterol accumulation after ischemic stroke.In addition,β-sitosterol showed high affinity for NPC1L1,a key transporter of cholesterol,and antagonized its activity.In conclusion,β-sitosterol may help treat ischemic stroke by inhibiting neuronal intracellular cholesterol overload/endoplasmic reticulum stress/apoptosis signaling pathways.展开更多
BACKGROUND Glomerular endothelial cell(GENC)injury is a characteristic of early-stage diabetic nephropathy(DN),and the investigation of potential therapeutic targets for preventing GENC injury is of clinical importanc...BACKGROUND Glomerular endothelial cell(GENC)injury is a characteristic of early-stage diabetic nephropathy(DN),and the investigation of potential therapeutic targets for preventing GENC injury is of clinical importance.AIM To investigate the role ofβ-arrestin-2 in GENCs under DN conditions.METHODS Eight-week-old C57BL/6J mice were intraperitoneally injected with streptozotocin to induce DN.GENCs were transfected with plasmids containing siRNA-β-arrestin-2,shRNA-activating transcription factor 6(ATF6),pCDNA-β-arrestin-2,or pCDNA-ATF6.Additionally,adeno-associated virus(AAV)containing shRNA-β-arrestin-2 was administered via a tail vein injection in DN mice.RESULTS The upregulation ofβ-arrestin-2 was observed in patients with DN as well as in GENCs from DN mice.Knockdown ofβ-arrestin-2 reduced apoptosis in high glucose-treated GENCs,which was reversed by the overexpression of ATF6.Moreover,overexpression ofβ-arrestin-2 Led to the activation of endoplasmic reticulum(ER)stress and the apoptosis of GENCs which could be mitigated by silencing of ATF6.Furthermore,knockdown ofβ-arrestin-2 by the administration of AAV-shRNA-β-arrestin-2 alleviated renal injury in DN mice.CONCLUSION Knockdown ofβ-arrestin-2 prevents GENC apoptosis by inhibiting ATF6-mediated ER stress in vivo and in vitro.Consequently,β-arrestin-2 may represent a promising therapeutic target for the clinical management of patients with DN.展开更多
BACKGROUND L-type calcium channels are the only protein channels sensitive to calcium channel blockers,and are expressed in various cancer types.The Cancer Genome Atlas database shows that the mRNA levels of multiple ...BACKGROUND L-type calcium channels are the only protein channels sensitive to calcium channel blockers,and are expressed in various cancer types.The Cancer Genome Atlas database shows that the mRNA levels of multiple L-type calcium channel subunits in esophageal squamous cell carcinoma tumor tissue are significantly higher than those in normal esophageal epithelial tissue.Therefore,we hypothesized that amlodipine,a long-acting dihydropyridine L-type calcium channel blocker,may inhibit the occurrence and development of esophageal cancer(EC).AIM To investigate the inhibitory effects of amlodipine on EC through endoplasmic reticulum(ER)stress.METHODS Cav1.3 protein expression levels in 50 pairs of EC tissues and corresponding paracancerous tissues were examined.Subsequently,the inhibitory effects of amlodipine on proliferation and migration of EC cells in vitro were detected using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide and Transwell assays.In vivo experiments were performed using murine xenograft model.To elucidate the underlying mechanisms,in vitro cell studies were performed to confirm that ER stress plays a role in inhibition proliferation and migration of EC cells treated with amlodipine.RESULTS The expression level of Cav1.3 in esophageal carcinoma was 1.6 times higher than that in paracancerous tissues.Amlodipine treatment decreased the viability of esophageal carcinoma cells in a dose-and time-dependent manner.In vivo animal experiments also clearly indicated that amlodipine inhibited the growth of EC tumors in mice.Additionally,amlodipine reduces the migration of tumor cells by inhibiting epithelial-mesenchymal transition(EMT).Mechanistic studies have demonstrated that amlodipine induces ER stress-mediated apoptosis and suppresses EMT.Moreover,amlodipine-induced autophagy was characterized by an increase in autophagy lysosomes and the accumulation of light chain 3B protein.The combination of amlodipine with the ER stress inhibitor 4-phenylbutyric acid further confirmed the role of the ER stress response in amlodipine-induced apoptosis,EMT,and autophagy.Furthermore,blocking autophagy increases the ratio of apoptosis and migration.CONCLUSION Collectively,we demonstrate for the first time that amlodipine promotes apoptosis,induces autophagy,and inhibits migration through ER stress,thereby exerting anti-tumor effects in EC.展开更多
Background Exposure to bisphenol A(BPA),an environmental pollutant known for its endocrine-disrupting properties,during gestation has been reported to increase the risk of fetal growth restriction(FGR)in an ovine mode...Background Exposure to bisphenol A(BPA),an environmental pollutant known for its endocrine-disrupting properties,during gestation has been reported to increase the risk of fetal growth restriction(FGR)in an ovine model of pregnancy.We hypothesized that the FGR results from the BPA-induced insufficiency and barrier dysfunction of the placenta,oxidative stress,inflammatory responses,autophagy and endoplasmic reticulum stress(ERS).However,precise mechanisms underlying the BPA-induced placental dysfunction,and subsequently,FGR,as well as the potential involvement of placental ERS in these complications,remain to be investigated.Methods In vivo experiment,16 twin-pregnant(from d 40 to 130 of gestation)Hu ewes were randomly distributed into two groups(8 ewes each).One group served as a control and received corn oil once a day,whereas the other group received BPA(5 mg/kg/d as a subcutaneous injection).In vitro study,ovine trophoblast cells(OTCs)were exposed to 4 treatments,6 replicates each.The OTCs were treated with 400μmol/L BPA,400μmol/L BPA+0.5μg/m L tunicamycin(Tm;ERS activator),400μmol/L BPA+1μmol/L 4-phenyl butyric acid(4-PBA;ERS antagonist)and DMEM/F12 complete medium(control),for 24 h.Results In vivo experiments,pregnant Hu ewes receiving the BPA from 40 to 130 days of pregnancy experienced a decrease in placental efficiency,progesterone(P4)level and fetal weight,and an increase in placental estrogen(E2)level,together with barrier dysfunctions,OS,inflammatory responses,autophagy and ERS in type A cotyledons.In vitro experiment,the OTCs exposed to BPA for 24 h showed an increase in the E2 level and related protein and gene expressions of autophagy,ERS,pro-apoptosis and inflammatory response,and a decrease in the P4 level and the related protein and gene expressions of antioxidant,anti-apoptosis and barrier function.Moreover,treating the OTCs with Tm aggravated BPA-induced dysfunction of barrier and endocrine(the increased E2 level and decreased P4 level),OS,inflammatory responses,autophagy,and ERS.However,treating the OTCs with 4-PBA reversed the counteracted effects of Tm mentioned above.Conclusions In general,the results reveal that BPA exposure can cause ERS in the ovine placenta and OTCs,and ERS induction might aggravate BPA-induced dysfunction of the placental barrier and endocrine,OS,inflammatory responses,and autophagy.These data offer novel mechanistic insights into whether ERS is involved in BPA-mediated placental dysfunction and fetal development.展开更多
We previously reported that miR-124-3p is markedly upregulated in microglia-derived exosomes following repetitive mild traumatic brain injury.However,its impact on neuronal endoplasmic reticulum stress following repet...We previously reported that miR-124-3p is markedly upregulated in microglia-derived exosomes following repetitive mild traumatic brain injury.However,its impact on neuronal endoplasmic reticulum stress following repetitive mild traumatic brain injury remains unclear.In this study,we first used an HT22 scratch injury model to mimic traumatic brain injury,then co-cultured the HT22 cells with BV2 microglia expressing high levels of miR-124-3p.We found that exosomes containing high levels of miR-124-3p attenuated apoptosis and endoplasmic reticulum stress.Furthermore,luciferase reporter assay analysis confirmed that miR-124-3p bound specifically to the endoplasmic reticulum stress-related protein IRE1α,while an IRE1αfunctional salvage experiment confirmed that miR-124-3p targeted IRE1αand reduced its expression,thereby inhibiting endoplasmic reticulum stress in injured neurons.Finally,we delivered microglia-derived exosomes containing miR-124-3p intranasally to a mouse model of repetitive mild traumatic brain injury and found that endoplasmic reticulum stress and apoptosis levels in hippocampal neurons were significantly reduced.These findings suggest that,after repetitive mild traumatic brain injury,miR-124-3 can be transferred from microglia-derived exosomes to injured neurons,where it exerts a neuroprotective effect by inhibiting endoplasmic reticulum stress.Therefore,microglia-derived exosomes containing miR-124-3p may represent a novel therapeutic strategy for repetitive mild traumatic brain injury.展开更多
In this study,endoplasmic reticulum(ER)stress inducer tunicamycin(TM)and inhibitor 4-phenylbutyric acid(4-PBA)were used to treat postmortem chicken breast muscle to investigate changes in tenderness and effects on apo...In this study,endoplasmic reticulum(ER)stress inducer tunicamycin(TM)and inhibitor 4-phenylbutyric acid(4-PBA)were used to treat postmortem chicken breast muscle to investigate changes in tenderness and effects on apoptosis and autophagy during 5 days ageing.TM-induced ER stress reduced shear force,enhanced myofibril fragmentation index(MFI),disrupted myofibril structure,increased desmin degradation,and activatedμ-calpain and caspase-12.In addition,TM-induced ER stress increased the expression of Bax,Bim,and cytochrome c,and decreased the expression of Bcl-x L.Furthermore,TM-induced ER stress improved the conversion of LC3I to LC3II,raised the expression of Beclin-1,and decreased the expression of p62,PI3K,and m TOR.The opposite results were observed after 4-PBA treatment.These results suggested that ER stress could improve chicken tenderness,promote apoptosis and autophagy during chicken postmortem ageing.展开更多
BACKGROUND Cell division cyclin 25C(CDC25C)is a protein that plays a critical role in the cell cycle,specifically in the transition from the G2 phase to the M phase.Recent research has shown that CDC25C could be a pot...BACKGROUND Cell division cyclin 25C(CDC25C)is a protein that plays a critical role in the cell cycle,specifically in the transition from the G2 phase to the M phase.Recent research has shown that CDC25C could be a potential therapeutic target for cancers,particularly for hepatocellular carcinoma(HCC).However,the specific regulatory mechanisms underlying the role of CDC25C in HCC tumorigenesis and development remain incompletely understood.AIM To explore the impact of CDC25C on cell proliferation and apoptosis,as well as its regulatory mechanisms in HCC development.METHODS Hepa1-6 and B16 cells were transduced with a lentiviral vector containing shRNA interference sequences(LV-CDC25C shRNA)to knock down CDC25C.Subsequently,a xenograft mouse model was established by subcutaneously injecting transduced Hepa1-6 cells into C57BL/6 mice to assess the effects of CDC25C knockdown on HCC development in vivo.Cell proliferation and migration were evaluated using a Cell Counting Kit-8 cell proliferation assays and wound healing assays,respectively.The expression of endoplasmic reticulum(ER)stress-related molecules(glucose-regulated protein 78,X-box binding protein-1,and C/EBP homologous protein)was measured in both cells and subcutaneous xenografts using quantitative real-time PCR(qRT-PCR)and western blotting.Additionally,apoptosis was investigated using flow cytometry,qRT-PCR,and western blotting.RESULTS CDC25C was stably suppressed in Hepa1-6 and B16 cells through LV-CDC25C shRNA transduction.A xenograft model with CDC25C knockdown was successfully established and that downregulation of CDC25C expression significantly inhibited HCC growth in mice.CDC25C knockdown not only inhibited cell proliferation and migration but also significantly increased the ER stress response,ultimately promoting ER stress-induced apoptosis in HCC cells.CONCLUSION The regulatory mechanism of CDC25C in HCC development may involve the activation of ER stress and the ER stress-induced apoptosis signaling pathway.展开更多
Objective:To investigate the pyroptosis-inducing effects of celastrol on tumor cells and to explore the potential mechanisms involved,specifically focusing on the role of the caspase-3/gasdermin E(GSDME)signaling path...Objective:To investigate the pyroptosis-inducing effects of celastrol on tumor cells and to explore the potential mechanisms involved,specifically focusing on the role of the caspase-3/gasdermin E(GSDME)signaling pathway and the impact of endoplasmic reticulum(ER)stress and autophagy.Methods: Necrostatin-1(Nec-1),lactate dehydrogenase release(LDH)assay,and Hoechst/propidium iodide(PI)double staining were employed to validate the mode of cell death.Western blot was used to detect the cleavage of GSDME and the expression of light chain 3(LC3)and BIP.Results: Celastrol induced cell swelling with large bubbles,which is consistent with the pyroptotic phenotype.Moreover,treatment with celastrol induced GSDME cleavage,indicating the activation of GSDME-mediated pyroptosis.GSDME knockout via CRISPR/Cas9 blocked the pyroptotic morphology of celastrol in HeLa cells.In addition,cleavage of GSDME was attenuated by a specific caspase-3 inhibitor in celastrol-treated cells,suggesting that GSDME activation was induced by caspase-3.Mechanistically,celastrol induced endoplasmic reticulum(ER)stress and autophagy in HeLa cells,and other ER stress inducers produced effects consistent with those of celastrol.Conclusion: These findings suggest that celastrol triggers caspase-3/GSDME-dependent pyroptosis via activation of ER stress,which may shed light on the potential antitumor clinical applications of celastrol.展开更多
AIM:To explore the effect of silent information regulator factor 2-related enzyme 1(SIRT1)on modulating apoptosis of human lens epithelial cells(HLECs)and alleviating lens opacification of rats through suppressing end...AIM:To explore the effect of silent information regulator factor 2-related enzyme 1(SIRT1)on modulating apoptosis of human lens epithelial cells(HLECs)and alleviating lens opacification of rats through suppressing endoplasmic reticulum(ER)stress.METHODS:HLECs(SRA01/04)were treated with varying concentrations of tunicamycin(TM)for 24h,and the expression of SIRT1 and C/EBP homologous protein(CHOP)was assessed using real-time quantitative polymerase chain reaction(RT-PCR),Western blotting,and immunofluorescence.Cell morphology and proliferation was evaluated using an inverted microscope and cell counting kit-8(CCK-8)assay,respectively.In the SRA01/04 cell apoptosis model,which underwent siRNA transfection for SIRT1 knockdown and SRT1720 treatment for its activation,the expression levels of SIRT1,CHOP,glucose regulated protein 78(GRP78),and activating transcription factor 4(ATF4)were examined.The potential reversal of SIRT1 knockdown effects by 4-phenyl butyric acid(4-PBA;an ER stress inhibitor)was investigated.In vivo,age-related cataract(ARC)rat models were induced by sodium selenite injection,and the protective role of SIRT1,activated by SRT1720 intraperitoneal injections,was evaluated through morphology observation,hematoxylin and eosin(H&E)staining,Western blotting,and RT-PCR.RESULTS:SIRT1 expression was downregulated in TMinduced SRA01/04 cells.Besides,in SRA01/04 cells,both cell apoptosis and CHOP expression increased with the rising doses of TM.ER stress was stimulated by TM,as evidenced by the increased GRP78 and ATF4 in the SRA01/04 cell apoptosis model.Inhibition of SIRT1 by siRNA knockdown increased ER stress activation,whereas SRT1720 treatment had opposite results.4-PBA partly reverse the adverse effect of SIRT1 knockdown on apoptosis.In vivo,SRT1720 attenuated the lens opacification and weakened the ER stress activation in ARC rat models.CONCLUSION:SIRT1 plays a protective role against TM-induced apoptosis in HLECs and slows the progression of cataract in rats by inhibiting ER stress.These findings suggest a novel strategy for cataract treatment focused on targeting ER stress,highlighting the therapeutic potential of SIRT1 modulation in ARC development.展开更多
Background:Prior research has established that exposure to low temperatures adversely affects ovarian function,yet the precise mechanisms remain to be elucidated.Methods:Thirty experimental rats,each demonstrating two...Background:Prior research has established that exposure to low temperatures adversely affects ovarian function,yet the precise mechanisms remain to be elucidated.Methods:Thirty experimental rats,each demonstrating two regular estrous cycles,were assorted randomly into three distinct groups:a control group,a cold exposure group,and a group treated with 4-phenylbutyric acid(4-PBA).To mimic the conditions of cold exposure,rats in the cold exposure and 4-PBA groups were subjected to immersion in ice water for 21 days.After 7 days of exposure to ice water,the 4-PBA group received intraperitoneal injections of a 20 mg/mL solution of 4-PBA at a dose of 100 mg/kg/day for 14 days.Estrous cycles were monitored via analysis of vaginal secretion smears.Serum hormone levels were measured using enzyme-linked immunosorbent assay(ELISA)kits.Ovarian morphology and the ultrastructure of granulosa cells(GCs)were evaluated using hematoxylin and eosin(HE)staining,and transmission electron microscopy(TEM),respectively.Apoptotic levels in GCs were quantified using a terminal deoxyribonucleotidyl transferase-mediated dUTP nick end labeling(TUNEL)kit.Expression of apoptotic markers,endoplasmic reticulum stress(ERS)indicators,and molecules associated with relevant pathways were assessed through immunohistochemistry,western blot,and quantitative realtime polymerase chain reaction(qRT-PCR).Results:Dysregulation of the estrous cycle was notable in rats exposed to cold.The cold exposure group exhibited significantly reduced levels of estradiol(E2)and progesterone(P)compared to controls,alongside an increase in follicular atresia and a reduction in the count of developing follicles.After cold exposure,enhanced apoptosis and ERS were evident,with activation of the protein kinase RNA-like endoplasmic reticulum kinase(PERK)/eukaryotic translation initiation factor 2α(eIF2α)/activating transcription factor 4(ATF4)signaling pathway in ovarian.Notable changes were also observed in the ultrastructure of ovarian GCs,where both apoptosis and ERS levels were increased.Conversely,treatment with 4-PBA alleviated disturbances in the estrous cycle and hormonal imbalances,improved ovarian morphology,and alleviated apoptosis and ERS,effectively inhibiting the PERK/eIF2α/ATF4 pathway.Additionally,4-PBA treatment significantly improved the ultrastructure of GCs and alleviated apoptosis and ERS in these cells within the cold exposure group.Conclusion:These findings suggest that ERS plays a significant role in ovarian dysfunction induced by cold exposure,primarily through promoting apoptosis.展开更多
Myocardial injury(MI)is a common occurrence in clinical practice caused by various factors such as ischemia,hypoxia,infection,metabolic abnormalities,and inflammation.Such damages are characterized by a reduction in m...Myocardial injury(MI)is a common occurrence in clinical practice caused by various factors such as ischemia,hypoxia,infection,metabolic abnormalities,and inflammation.Such damages are characterized by a reduction in myocardial function and cardiomyocyte death that can result in dangerous outcomes such as cardiac failure and arrhythmias.An endoplasmic reticulum stress(ERS)-induced unfolded protein response(UPR)is triggered by several stressors,and its intricate signaling networks are instrumental in both cell survival and death.Cardiac damage frequently triggers ERS in response to different types of injuries and stress.High levels of ERS can exacerbate myocardial damage by inducing necrosis and apoptosis.To target ERS in MI prevention and treatment,current medical research is focused on identifying effective therapy approaches.Traditional Chinese medicine(TCM)is frequently used because of its vast range of applications and low risk of adverse effects.Various studies have demonstrated that active components of Chinese medicines,including polyphenols,saponins,and alkaloids,can reduce myocardial cell death,inflammation,and modify the ERS pathway,thus preventing and mitigating cardiac injury.Thus,this paper aims to provide a new direction and scientific basis for targeting ERS in MI prevention and treatment.We specifically summarize recent research progress on the regulation mechanism of ERS in MI by active ingredients of TCM.展开更多
Degenerative musculoskeletal diseases are structural and functional failures of the musculoskeletal system,including osteoarthritis,osteoporosis,intervertebral disc degeneration(IVDD),and sarcopenia.As the global popu...Degenerative musculoskeletal diseases are structural and functional failures of the musculoskeletal system,including osteoarthritis,osteoporosis,intervertebral disc degeneration(IVDD),and sarcopenia.As the global population ages,degenerative musculoskeletal diseases are becoming more prevalent.However,the pathogenesis of degenerative musculoskeletal diseases is not fully understood.Previous studies have revealed that endoplasmic reticulum(ER)stress is a stress response that occurs when impairment of the protein folding capacity of the ER leads to the accumulation of misfolded or unfolded proteins in the ER,contributing to degenerative musculoskeletal diseases.By affecting cartilage degeneration,synovitis,meniscal lesion,subchondral bone remodeling of osteoarthritis,bone remodeling and angiogenesis of osteoporosis,nucleus pulposus degeneration,annulus fibrosus rupture,cartilaginous endplate degeneration of IVDD,and sarcopenia,ER stress is involved in the pathogenesis of degenerative musculoskeletal diseases.Preclinical studies have found that regulation of ER stress can delay the progression of multiple degenerative musculoskeletal diseases.These pilot studies provide foundations for further evaluation of the feasibility,efficacy,and safety of ER stress modulators in the treatment of musculoskeletal degenerative diseases in clinical trials.In this review,we have integrated up-to-date research findings of ER stress into the pathogenesis of degenerative musculoskeletal diseases.In a future perspective,we have also discussed possible directions of ER stress in the investigation of degenerative musculoskeletal disease,potential therapeutic strategies for degenerative musculoskeletal diseases using ER stress modulators,as well as underlying challenges and obstacles in bench-to-beside research.展开更多
Lung injury is the main manifestation of paraquat poisoning. Few studies have addressed brain damage after paraquat poisoning. Ulinastatin is a protease inhibitor that can effectively stabilize lysosomal membranes, pr...Lung injury is the main manifestation of paraquat poisoning. Few studies have addressed brain damage after paraquat poisoning. Ulinastatin is a protease inhibitor that can effectively stabilize lysosomal membranes, prevent cell damage, and reduce the production of free radicals. This study assumed that ulinastatin would exert these effects on brain tissues that had been poisoned with paraquat. Rat models of paraquat poisoning were intraperitoneally injected with ulinastatin. Simultaneously, rats in the control group were administered normal saline. Hematoxylin-eosin staining showed that most hippocampal cells were contracted and nucleoli had disappeared in the paraquat group. Fewer cells in the hippocampus were concentrated and nucleoli had dis- appeared in the ulinastatin group. Western blot assay showed that expressions of GRP78 and cleaved-caspase-3 were significantly lower in the ulinastatin group than in the paraquat group. Immunohistochemical findings showed that CHOP immunoreactivity was significantly lower in the ulinastatin group than in the paraquat group. Terminal deoxynucleotidyl transferase-medi- ated dUTP nick end labeling staining showed that the number of apoptotic cells was reduced in the paraquat and ulinastatin groups. These data confirmed that endoplasmic reticular stress can be induced by acute paraqnat poisoning. Ulinastatin can effectively inhibit this stress as well as cell apoptosis, thereby exerting a neuroprotective effect.展开更多
Objective PERK/elF2/CHOP is a major signaling pathway mediating endoplasmic reticulum (ER) stress related with atherosclerosis. Oxidized LDL (ox-LDL) also induces endothelial apoptosis and plays a vital role in th...Objective PERK/elF2/CHOP is a major signaling pathway mediating endoplasmic reticulum (ER) stress related with atherosclerosis. Oxidized LDL (ox-LDL) also induces endothelial apoptosis and plays a vital role in the initiation and progression of atherosclerosis. The present study was conducted to explore the regulatory effect of ox-LDL on PERK/elF2a/CHOP signaling pathway in vascular endothelial cells. Methods The effects of ox-LDL on PERK and p-elF2a protein expression of primary human umbilical vein endothelial cells (HUVECs) were investigated by Western blot analysis. PERK gene silencing and selective elF2a phosphatase inhibitor, salubrinal were used to inhibit the process of ox-LDL induced endothelial cell apoptosis, caspase-3 activity, and CHOP mRNA level. Results Ox-LDL treatment significantly increased the expression of PERK, PERK-mediated inactivation of elF2a phosphorylation, and the expression of CHOP, as well as the caspase-3 activity and apoptosis. The effects of ox-LDL were markedly decreased by knocking down PERK with stable transduction of lentiviral shRNA or by selective elF2a phosphatase inhibitor, salubrinal. Conclusion This study provides the first evidence that ox-LDL induces apoptosis in vascular endothelial cells mediated largely via the PERK/elF2a/CHOP ER-stress pathway. It adds new insights into the molecular mechanisms underlying the pathogenesis and progression of atherosclerosis.展开更多
Nonalcoholic fatty liver disease(NAFLD)has emerged as a common public health problem in recent decades.However,the underlying mechanisms leading to the development of NAFLD are not fully understood.The endoplasmic ret...Nonalcoholic fatty liver disease(NAFLD)has emerged as a common public health problem in recent decades.However,the underlying mechanisms leading to the development of NAFLD are not fully understood.The endoplasmic reticulum(ER)stress response has recently been proposed to play a crucial role in both the development of steatosis and progression to nonalcoholic steatohepatitis.ER stress is activated to regulate protein synthesis and restore homeostatic equilibrium when the cell is stressed due to the accumulation of unfolded or misfolded proteins.However,delayed or insufficient responses to ER stress may turn physiological mechanisms into pathological consequences,including fat accumulation,insulin resistance,inflammation,and apoptosis,all of which play important roles in the pathogenesis of NAFLD.Therefore,understanding the role of ER stress in the pathogenesis of NAFLD has become a topic of intense investigation.This review highlights the recent findings linking ER stress signaling pathways to the pathogenesis of NAFLD.展开更多
基金supported by the National Natural Science Foundation of China,Nos.82260245(to YX),81660207(to YX),81960253(to YL),82160268(to YL),U1812403(to ZG)Science and Technology Projects of Guizhou Province,Nos.[2019]1440(to YX),[2020]1Z067(to WH)+1 种基金Cultivation Foundation of Guizhou Medical University,No.[20NSP069](to YX)Excellent Young Talents Plan of Guizhou Medical University,No.(2022)101(to WH)。
文摘Several studies have shown that activation of unfolded protein response and endoplasmic reticulum(ER)stress plays a crucial role in severe cerebral ischemia/reperfusion injury.Autophagy occurs within hours after cerebral ischemia,but the relationship between ER stress and autophagy remains unclear.In this study,we established experimental models using oxygen-glucose deprivation/reoxygenation in PC12 cells and primary neurons to simulate cerebral ischemia/reperfusion injury.We found that prolongation of oxygen-glucose deprivation activated the ER stress pathway protein kinase-like endoplasmic reticulum kinase(PERK)/eukaryotic translation initiation factor 2 subunit alpha(e IF2α)-activating transcription factor 4(ATF4)-C/EBP homologous protein(CHOP),increased neuronal apoptosis,and induced autophagy.Furthermore,inhibition of ER stress using inhibitors or by si RNA knockdown of the PERK gene significantly attenuated excessive autophagy and neuronal apoptosis,indicating an interaction between autophagy and ER stress and suggesting PERK as an essential target for regulating autophagy.Blocking autophagy with chloroquine exacerbated ER stress-induced apoptosis,indicating that normal levels of autophagy play a protective role in neuronal injury following cerebral ischemia/reperfusion injury.Findings from this study indicate that cerebral ischemia/reperfusion injury can trigger neuronal ER stress and promote autophagy,and suggest that PERK is a possible target for inhibiting excessive autophagy in cerebral ischemia/reperfusion injury.
基金Yuansong Wang National Famous Traditional Chinese Medicine Expert Heritage Studio,No.4(2022).
文摘BACKGROUND Plantamajoside(PMS)has shown potential in mitigating cell damage caused by high glucose(HG)levels.Despite this,the precise therapeutic effects of PMS on type 2 diabetes mellitus(T2DM)and the underlying regulatory mechanisms require further exploration.AIM To investigate PMS therapeutic effects on T2DM in mice and elucidate its mechanisms of action through in vivo and in vitro experiments.METHODS An in vitro damage model of MIN6 cells was established using HG and palmitic acid(PA).PMS's protective effect on cell damage was assessed.Next,transcriptomics was employed to examine how PMS treatment affects gene expression of MIN6 cells.Furthermore,the effect of PMS on protein processing in endoplasmic reticulum and apoptosis pathways was validated.A T2DM mouse model was used to validate the therapeutic effects and mechanisms of PMS in vivo.RESULTS PMS intervention ameliorated cell injury in HG+PA-induced MIN6 cell damage.Transcriptomic analysis revealed that protein processing in the endoplasmic reticulum and apoptosis pathways were enriched in cells treated with PMS,with significant downregulation of the gene Dnajc1.Further validation indicated that PMS significantly inhibited the expression of apoptosis-related factors(Bax,CytC)and endoplasmic reticulum stress(ERS)-related factors[ATF6,XBP1,Ddit3(CHOP),GRP78],while promoting the expression of Bcl-2 and Dnajc1.Additionally,the inhibitory effects of PMS on ERS and apoptosis were abolished upon Dnajc1 silencing.Furthermore,in vivo experiments demonstrated that PMS intervention effectively improved pancreatic damage,suppressed the expression of apoptosis-related factors(Bax,CytC),and ERS-related factors[ATF6,XBP1,Ddit3(CHOP),GRP78],while promoting the expression of Bcl-2 and Dnajc1 in a T2DM model mice.CONCLUSION PMS intervention could alleviate pancreatic tissue damage effectively.The mechanism of action involves Dnajc1 activation,which subsequently inhibits apoptosis and ERS,ameliorating damage to pancreaticβ-cells.
基金Supported by the Jiangsu Agriculture Science and Technology Innovation Fund(No.CX(22)2029)the National Natural Science Foundation of China(Nos.32172948,31800436)+1 种基金the“JBGS”Project of Seed Industry Revitalization in Jiangsu Province(No.JBGS(2021)034)the Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.SJCX23_0616)。
文摘17α-methyltestosterone(17α-MT)is an emerging pollutant,which is harmful to the endocrine system and reproduction of fish.We investigated the effects of different concentrations of 17α-MT(0,5,30,60,and 100 mg/kg)on endoplasmic reticulum stress(ERS)and apoptosis in the liver of Takifugu fasciatus.Results show that:(1)with the increase of 17α-MT treatment concentration,liver transaminases(alanine aminotransferase;aspartate aminotransferase)and the mRNA expression of ERS marker genes(glucose-regulated protein 78;calreticulin)of T.fasciatus were significantly increased compared with the control group(P<0.05);(2)the activity of succinate dehydrogenase(SDH),Caspase3 and Caspase9 in the liver of T.fasciatus increased with the increase of 17α-MT concentration compared with the control group(P<0.05);(3)by using 4-phenylbutyricacid(4-PBA)inhibitors to stimulate ERS through in vitro experiments,the expression of ERS and apoptosis-related genes significantly decreased(P<0.05),and the apoptosis rate of T.fasciatus hepatocytes was significantly inhibited(P<0.05)under 17α-MT treatment.This study confirmed that ERS played an important role in the induction of apoptosis in the hepatocytes of T.fasciatus,which enriched the ecotoxicological information of environmental androgens.
基金financially supported by the National Natural Science Foundation of China(82060598,32260587)the Natural Science Foundation of Guizhou Province(QKH-J-ZK[2021]181)+4 种基金the Scientific Research Program of Guizhou Provincial Department of Education(QJJ[2023]019)the Science&Technology Program of Guizhou Province(QKHPTRC-CXTD[2022]014)the Excellent Youth Talents of Zunyi Medical University(17zy-006)the Innovation and Entrepreneurship Training Program for College Students of Guizhou Province(S202210661138)the Innovation and Entrepreneurship Training Program for College Students of Zunyi Medical University(ZYDC2021108)。
文摘Foods and animal feeds frequently become contaminated with the nephrotoxic ochratoxin A(OTA).Our prior research has indicated that ursolic acid(UA),which is widely present in fruits and medicinal plants,has the potential to alleviate nephrotoxicity triggered by OTA.Additionally,excessive induction of endoplasmic reticulum(ER)-phagy exacerbates OTA-induced apoptosis.Therefore,further investigation is essential to comprehend whether UA can mitigate OTA-induced apoptosis by influencing ER-phagy.This objective is accomplished through a series of experiments involving assessments of cell viability,apoptosis,fluorescence microscopy,and western blot analysis.The outcomes of these experiments reveal that pre-treatment with 4μmol/L UA for 2 h can markedly reverse the elevated apoptotic rate,the co-localization of ER and lysosomes,and the protein expressions of GRP78,p-eIF2α,Chop,Bax,and Bak,as well as the reduced cell viability and the protein expressions of Lonp1,Trap1,p62,Tex264,FAM134B,Bcl-2,and Bcl-xl,all caused by exposure to 1μmol/L OTA for 24 h in human proximal tubule epithelial-originated kidney-2(HK-2)cells(P<0.05).Interestingly,the increased expression of LC3B-II induced by OTA is further amplified by UA pre-treatment(P<0.05).In conclusion,OTA triggers a harmful feedback loop between ER stress(ERS)and excessive ER-phagy,thereby further promoting ERS-and mitochondrial-mediated apoptosis in vitro.However,this effect is significantly mitigated by UA through the inhibition of autophagosome-lysosome fusion,consequently blocking the excessive ER-phagic flux.
基金supported by the National Natural Science Foundation of China,Nos.82071339 and 82271370(both to LG).
文摘Ferroptosis is a form of non-apoptotic programmed cell death,and its mechanisms mainly involve the accumulation of lipid peroxides,imbalance in the amino acid antioxidant system,and disordered iron metabolism.The primary organelle responsible for coordinating external challenges and internal cell demands is the endoplasmic reticulum,and the progression of inflammatory diseases can trigger endoplasmic reticulum stress.Evidence has suggested that ferroptosis may share pathways or interact with endoplasmic reticulum stress in many diseases and plays a role in cell survival.Ferroptosis and endoplasmic reticulum stress may occur after ischemic stroke.However,there are few reports on the interactions of ferroptosis and endoplasmic reticulum stress with ischemic stroke.This review summarized the recent research on the relationships between ferroptosis and endoplasmic reticulum stress and ischemic stroke,aiming to provide a reference for developing treatments for ischemic stroke.
基金supported by the National Natural Science Foundation of China,Nos.82104158(to XT),31800887(to LY),31972902(to LY),82001422(to YL)China Postdoctoral Science Foundation,No.2020M683750(to LY)partially by Young Talent Fund of University Association for Science and Technology in Shaanxi Province of China,No.20200307(to LY).
文摘β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unknown whetherβ-sitosterol treatment reduces the effects of ischemic stroke.Here we found that,in a mouse model of ischemic stroke induced by middle cerebral artery occlusion,β-sitosterol reduced the volume of cerebral infarction and brain edema,reduced neuronal apoptosis in brain tissue,and alleviated neurological dysfunction;moreover,β-sitosterol increased the activity of oxygen-and glucose-deprived cerebral cortex neurons and reduced apoptosis.Further investigation showed that the neuroprotective effects ofβ-sitosterol may be related to inhibition of endoplasmic reticulum stress caused by intracellular cholesterol accumulation after ischemic stroke.In addition,β-sitosterol showed high affinity for NPC1L1,a key transporter of cholesterol,and antagonized its activity.In conclusion,β-sitosterol may help treat ischemic stroke by inhibiting neuronal intracellular cholesterol overload/endoplasmic reticulum stress/apoptosis signaling pathways.
基金Supported by Key Research and Development Program of Shandong Province,No.2021CXGC011101Special Fund for Taishan Scholars Project,No.tsqn202211324+2 种基金National Natural Science Foundation of China,No.81900669Natural Science Foundation of Shandong Province,China,No.ZR2018PH007the Multidisciplinary Innovation Center for Nephrology of the Second Hospital of Shandong University.
文摘BACKGROUND Glomerular endothelial cell(GENC)injury is a characteristic of early-stage diabetic nephropathy(DN),and the investigation of potential therapeutic targets for preventing GENC injury is of clinical importance.AIM To investigate the role ofβ-arrestin-2 in GENCs under DN conditions.METHODS Eight-week-old C57BL/6J mice were intraperitoneally injected with streptozotocin to induce DN.GENCs were transfected with plasmids containing siRNA-β-arrestin-2,shRNA-activating transcription factor 6(ATF6),pCDNA-β-arrestin-2,or pCDNA-ATF6.Additionally,adeno-associated virus(AAV)containing shRNA-β-arrestin-2 was administered via a tail vein injection in DN mice.RESULTS The upregulation ofβ-arrestin-2 was observed in patients with DN as well as in GENCs from DN mice.Knockdown ofβ-arrestin-2 reduced apoptosis in high glucose-treated GENCs,which was reversed by the overexpression of ATF6.Moreover,overexpression ofβ-arrestin-2 Led to the activation of endoplasmic reticulum(ER)stress and the apoptosis of GENCs which could be mitigated by silencing of ATF6.Furthermore,knockdown ofβ-arrestin-2 by the administration of AAV-shRNA-β-arrestin-2 alleviated renal injury in DN mice.CONCLUSION Knockdown ofβ-arrestin-2 prevents GENC apoptosis by inhibiting ATF6-mediated ER stress in vivo and in vitro.Consequently,β-arrestin-2 may represent a promising therapeutic target for the clinical management of patients with DN.
基金Supported by the Key Medical Scientific and Technological Project of Henan Province,No.SBGJ202102188Henan Provincial Medical Science and Technology Project,No.LHGJ20221012the Key Project of Science and Technology of Xinxiang,No.GG2020027.
文摘BACKGROUND L-type calcium channels are the only protein channels sensitive to calcium channel blockers,and are expressed in various cancer types.The Cancer Genome Atlas database shows that the mRNA levels of multiple L-type calcium channel subunits in esophageal squamous cell carcinoma tumor tissue are significantly higher than those in normal esophageal epithelial tissue.Therefore,we hypothesized that amlodipine,a long-acting dihydropyridine L-type calcium channel blocker,may inhibit the occurrence and development of esophageal cancer(EC).AIM To investigate the inhibitory effects of amlodipine on EC through endoplasmic reticulum(ER)stress.METHODS Cav1.3 protein expression levels in 50 pairs of EC tissues and corresponding paracancerous tissues were examined.Subsequently,the inhibitory effects of amlodipine on proliferation and migration of EC cells in vitro were detected using 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2-H-tetrazolium bromide and Transwell assays.In vivo experiments were performed using murine xenograft model.To elucidate the underlying mechanisms,in vitro cell studies were performed to confirm that ER stress plays a role in inhibition proliferation and migration of EC cells treated with amlodipine.RESULTS The expression level of Cav1.3 in esophageal carcinoma was 1.6 times higher than that in paracancerous tissues.Amlodipine treatment decreased the viability of esophageal carcinoma cells in a dose-and time-dependent manner.In vivo animal experiments also clearly indicated that amlodipine inhibited the growth of EC tumors in mice.Additionally,amlodipine reduces the migration of tumor cells by inhibiting epithelial-mesenchymal transition(EMT).Mechanistic studies have demonstrated that amlodipine induces ER stress-mediated apoptosis and suppresses EMT.Moreover,amlodipine-induced autophagy was characterized by an increase in autophagy lysosomes and the accumulation of light chain 3B protein.The combination of amlodipine with the ER stress inhibitor 4-phenylbutyric acid further confirmed the role of the ER stress response in amlodipine-induced apoptosis,EMT,and autophagy.Furthermore,blocking autophagy increases the ratio of apoptosis and migration.CONCLUSION Collectively,we demonstrate for the first time that amlodipine promotes apoptosis,induces autophagy,and inhibits migration through ER stress,thereby exerting anti-tumor effects in EC.
基金supported by the fund for the National 14th Five-Year Plan Key Research and Development Program(2021YFD1600702)XPCC Agricultural Science and Technology Innovation Project(NCG202232)the Top Talents Award Plan of Yangzhou University(2020)。
文摘Background Exposure to bisphenol A(BPA),an environmental pollutant known for its endocrine-disrupting properties,during gestation has been reported to increase the risk of fetal growth restriction(FGR)in an ovine model of pregnancy.We hypothesized that the FGR results from the BPA-induced insufficiency and barrier dysfunction of the placenta,oxidative stress,inflammatory responses,autophagy and endoplasmic reticulum stress(ERS).However,precise mechanisms underlying the BPA-induced placental dysfunction,and subsequently,FGR,as well as the potential involvement of placental ERS in these complications,remain to be investigated.Methods In vivo experiment,16 twin-pregnant(from d 40 to 130 of gestation)Hu ewes were randomly distributed into two groups(8 ewes each).One group served as a control and received corn oil once a day,whereas the other group received BPA(5 mg/kg/d as a subcutaneous injection).In vitro study,ovine trophoblast cells(OTCs)were exposed to 4 treatments,6 replicates each.The OTCs were treated with 400μmol/L BPA,400μmol/L BPA+0.5μg/m L tunicamycin(Tm;ERS activator),400μmol/L BPA+1μmol/L 4-phenyl butyric acid(4-PBA;ERS antagonist)and DMEM/F12 complete medium(control),for 24 h.Results In vivo experiments,pregnant Hu ewes receiving the BPA from 40 to 130 days of pregnancy experienced a decrease in placental efficiency,progesterone(P4)level and fetal weight,and an increase in placental estrogen(E2)level,together with barrier dysfunctions,OS,inflammatory responses,autophagy and ERS in type A cotyledons.In vitro experiment,the OTCs exposed to BPA for 24 h showed an increase in the E2 level and related protein and gene expressions of autophagy,ERS,pro-apoptosis and inflammatory response,and a decrease in the P4 level and the related protein and gene expressions of antioxidant,anti-apoptosis and barrier function.Moreover,treating the OTCs with Tm aggravated BPA-induced dysfunction of barrier and endocrine(the increased E2 level and decreased P4 level),OS,inflammatory responses,autophagy,and ERS.However,treating the OTCs with 4-PBA reversed the counteracted effects of Tm mentioned above.Conclusions In general,the results reveal that BPA exposure can cause ERS in the ovine placenta and OTCs,and ERS induction might aggravate BPA-induced dysfunction of the placental barrier and endocrine,OS,inflammatory responses,and autophagy.These data offer novel mechanistic insights into whether ERS is involved in BPA-mediated placental dysfunction and fetal development.
基金supported by the Haihe Laboratory of Cell Ecosystem Innovation Fund,No.22HHXBSS00047(to PL)the National Natural Science Foundation of China,Nos.82072166(to PL),82071394(to XG)+4 种基金Science and Technology Planning Project of Tianjin,No.20YFZCSY00030(to PL)Science and Technology Project of Tianjin Municipal Health Commission,No.TJWJ2021QN005(to XG)Tianjin Key Medical Discipline(Specialty)Construction Project,No.TJYXZDXK-006ATianjin Municipal Education Commission Scientific Research Program Project,No.2020KJ164(to JZ)China Postdoctoral Science Foundation,No.2022M712392(to ZY).
文摘We previously reported that miR-124-3p is markedly upregulated in microglia-derived exosomes following repetitive mild traumatic brain injury.However,its impact on neuronal endoplasmic reticulum stress following repetitive mild traumatic brain injury remains unclear.In this study,we first used an HT22 scratch injury model to mimic traumatic brain injury,then co-cultured the HT22 cells with BV2 microglia expressing high levels of miR-124-3p.We found that exosomes containing high levels of miR-124-3p attenuated apoptosis and endoplasmic reticulum stress.Furthermore,luciferase reporter assay analysis confirmed that miR-124-3p bound specifically to the endoplasmic reticulum stress-related protein IRE1α,while an IRE1αfunctional salvage experiment confirmed that miR-124-3p targeted IRE1αand reduced its expression,thereby inhibiting endoplasmic reticulum stress in injured neurons.Finally,we delivered microglia-derived exosomes containing miR-124-3p intranasally to a mouse model of repetitive mild traumatic brain injury and found that endoplasmic reticulum stress and apoptosis levels in hippocampal neurons were significantly reduced.These findings suggest that,after repetitive mild traumatic brain injury,miR-124-3 can be transferred from microglia-derived exosomes to injured neurons,where it exerts a neuroprotective effect by inhibiting endoplasmic reticulum stress.Therefore,microglia-derived exosomes containing miR-124-3p may represent a novel therapeutic strategy for repetitive mild traumatic brain injury.
基金supported by the National Natural Science Foundation of China(G32072142,31972099)。
文摘In this study,endoplasmic reticulum(ER)stress inducer tunicamycin(TM)and inhibitor 4-phenylbutyric acid(4-PBA)were used to treat postmortem chicken breast muscle to investigate changes in tenderness and effects on apoptosis and autophagy during 5 days ageing.TM-induced ER stress reduced shear force,enhanced myofibril fragmentation index(MFI),disrupted myofibril structure,increased desmin degradation,and activatedμ-calpain and caspase-12.In addition,TM-induced ER stress increased the expression of Bax,Bim,and cytochrome c,and decreased the expression of Bcl-x L.Furthermore,TM-induced ER stress improved the conversion of LC3I to LC3II,raised the expression of Beclin-1,and decreased the expression of p62,PI3K,and m TOR.The opposite results were observed after 4-PBA treatment.These results suggested that ER stress could improve chicken tenderness,promote apoptosis and autophagy during chicken postmortem ageing.
基金Supported by Natural Science Foundation of Guangxi Zhuang Autonomous Region,China,No.2023GXNSFAA026070 and No.2018GXNSFAA281071.
文摘BACKGROUND Cell division cyclin 25C(CDC25C)is a protein that plays a critical role in the cell cycle,specifically in the transition from the G2 phase to the M phase.Recent research has shown that CDC25C could be a potential therapeutic target for cancers,particularly for hepatocellular carcinoma(HCC).However,the specific regulatory mechanisms underlying the role of CDC25C in HCC tumorigenesis and development remain incompletely understood.AIM To explore the impact of CDC25C on cell proliferation and apoptosis,as well as its regulatory mechanisms in HCC development.METHODS Hepa1-6 and B16 cells were transduced with a lentiviral vector containing shRNA interference sequences(LV-CDC25C shRNA)to knock down CDC25C.Subsequently,a xenograft mouse model was established by subcutaneously injecting transduced Hepa1-6 cells into C57BL/6 mice to assess the effects of CDC25C knockdown on HCC development in vivo.Cell proliferation and migration were evaluated using a Cell Counting Kit-8 cell proliferation assays and wound healing assays,respectively.The expression of endoplasmic reticulum(ER)stress-related molecules(glucose-regulated protein 78,X-box binding protein-1,and C/EBP homologous protein)was measured in both cells and subcutaneous xenografts using quantitative real-time PCR(qRT-PCR)and western blotting.Additionally,apoptosis was investigated using flow cytometry,qRT-PCR,and western blotting.RESULTS CDC25C was stably suppressed in Hepa1-6 and B16 cells through LV-CDC25C shRNA transduction.A xenograft model with CDC25C knockdown was successfully established and that downregulation of CDC25C expression significantly inhibited HCC growth in mice.CDC25C knockdown not only inhibited cell proliferation and migration but also significantly increased the ER stress response,ultimately promoting ER stress-induced apoptosis in HCC cells.CONCLUSION The regulatory mechanism of CDC25C in HCC development may involve the activation of ER stress and the ER stress-induced apoptosis signaling pathway.
基金supported by grants from startup fund program at Beijing University of Chinese Medicine(90011451310011)key research fund for drug discovery in Chinese medicine at Beijing University of Chinese Medicine(1000061223476)startup fund program at Beijing University of Chinese Medicine(90020361220006).
文摘Objective:To investigate the pyroptosis-inducing effects of celastrol on tumor cells and to explore the potential mechanisms involved,specifically focusing on the role of the caspase-3/gasdermin E(GSDME)signaling pathway and the impact of endoplasmic reticulum(ER)stress and autophagy.Methods: Necrostatin-1(Nec-1),lactate dehydrogenase release(LDH)assay,and Hoechst/propidium iodide(PI)double staining were employed to validate the mode of cell death.Western blot was used to detect the cleavage of GSDME and the expression of light chain 3(LC3)and BIP.Results: Celastrol induced cell swelling with large bubbles,which is consistent with the pyroptotic phenotype.Moreover,treatment with celastrol induced GSDME cleavage,indicating the activation of GSDME-mediated pyroptosis.GSDME knockout via CRISPR/Cas9 blocked the pyroptotic morphology of celastrol in HeLa cells.In addition,cleavage of GSDME was attenuated by a specific caspase-3 inhibitor in celastrol-treated cells,suggesting that GSDME activation was induced by caspase-3.Mechanistically,celastrol induced endoplasmic reticulum(ER)stress and autophagy in HeLa cells,and other ER stress inducers produced effects consistent with those of celastrol.Conclusion: These findings suggest that celastrol triggers caspase-3/GSDME-dependent pyroptosis via activation of ER stress,which may shed light on the potential antitumor clinical applications of celastrol.
基金Supported by National Natural Science Foundation for Young Scientists of China(No.82101097)National Natural Science Foundation of China(No.82070937).
文摘AIM:To explore the effect of silent information regulator factor 2-related enzyme 1(SIRT1)on modulating apoptosis of human lens epithelial cells(HLECs)and alleviating lens opacification of rats through suppressing endoplasmic reticulum(ER)stress.METHODS:HLECs(SRA01/04)were treated with varying concentrations of tunicamycin(TM)for 24h,and the expression of SIRT1 and C/EBP homologous protein(CHOP)was assessed using real-time quantitative polymerase chain reaction(RT-PCR),Western blotting,and immunofluorescence.Cell morphology and proliferation was evaluated using an inverted microscope and cell counting kit-8(CCK-8)assay,respectively.In the SRA01/04 cell apoptosis model,which underwent siRNA transfection for SIRT1 knockdown and SRT1720 treatment for its activation,the expression levels of SIRT1,CHOP,glucose regulated protein 78(GRP78),and activating transcription factor 4(ATF4)were examined.The potential reversal of SIRT1 knockdown effects by 4-phenyl butyric acid(4-PBA;an ER stress inhibitor)was investigated.In vivo,age-related cataract(ARC)rat models were induced by sodium selenite injection,and the protective role of SIRT1,activated by SRT1720 intraperitoneal injections,was evaluated through morphology observation,hematoxylin and eosin(H&E)staining,Western blotting,and RT-PCR.RESULTS:SIRT1 expression was downregulated in TMinduced SRA01/04 cells.Besides,in SRA01/04 cells,both cell apoptosis and CHOP expression increased with the rising doses of TM.ER stress was stimulated by TM,as evidenced by the increased GRP78 and ATF4 in the SRA01/04 cell apoptosis model.Inhibition of SIRT1 by siRNA knockdown increased ER stress activation,whereas SRT1720 treatment had opposite results.4-PBA partly reverse the adverse effect of SIRT1 knockdown on apoptosis.In vivo,SRT1720 attenuated the lens opacification and weakened the ER stress activation in ARC rat models.CONCLUSION:SIRT1 plays a protective role against TM-induced apoptosis in HLECs and slows the progression of cataract in rats by inhibiting ER stress.These findings suggest a novel strategy for cataract treatment focused on targeting ER stress,highlighting the therapeutic potential of SIRT1 modulation in ARC development.
基金supported by the National Natural Science Foundation of China(Nos.82174426,82104740)the Natural Science Foundation of Hebei Province of China(No.H2021423020)the Innovation Funding Program for doctoral students in Hebei Province(No.CXZZBS2022098).
文摘Background:Prior research has established that exposure to low temperatures adversely affects ovarian function,yet the precise mechanisms remain to be elucidated.Methods:Thirty experimental rats,each demonstrating two regular estrous cycles,were assorted randomly into three distinct groups:a control group,a cold exposure group,and a group treated with 4-phenylbutyric acid(4-PBA).To mimic the conditions of cold exposure,rats in the cold exposure and 4-PBA groups were subjected to immersion in ice water for 21 days.After 7 days of exposure to ice water,the 4-PBA group received intraperitoneal injections of a 20 mg/mL solution of 4-PBA at a dose of 100 mg/kg/day for 14 days.Estrous cycles were monitored via analysis of vaginal secretion smears.Serum hormone levels were measured using enzyme-linked immunosorbent assay(ELISA)kits.Ovarian morphology and the ultrastructure of granulosa cells(GCs)were evaluated using hematoxylin and eosin(HE)staining,and transmission electron microscopy(TEM),respectively.Apoptotic levels in GCs were quantified using a terminal deoxyribonucleotidyl transferase-mediated dUTP nick end labeling(TUNEL)kit.Expression of apoptotic markers,endoplasmic reticulum stress(ERS)indicators,and molecules associated with relevant pathways were assessed through immunohistochemistry,western blot,and quantitative realtime polymerase chain reaction(qRT-PCR).Results:Dysregulation of the estrous cycle was notable in rats exposed to cold.The cold exposure group exhibited significantly reduced levels of estradiol(E2)and progesterone(P)compared to controls,alongside an increase in follicular atresia and a reduction in the count of developing follicles.After cold exposure,enhanced apoptosis and ERS were evident,with activation of the protein kinase RNA-like endoplasmic reticulum kinase(PERK)/eukaryotic translation initiation factor 2α(eIF2α)/activating transcription factor 4(ATF4)signaling pathway in ovarian.Notable changes were also observed in the ultrastructure of ovarian GCs,where both apoptosis and ERS levels were increased.Conversely,treatment with 4-PBA alleviated disturbances in the estrous cycle and hormonal imbalances,improved ovarian morphology,and alleviated apoptosis and ERS,effectively inhibiting the PERK/eIF2α/ATF4 pathway.Additionally,4-PBA treatment significantly improved the ultrastructure of GCs and alleviated apoptosis and ERS in these cells within the cold exposure group.Conclusion:These findings suggest that ERS plays a significant role in ovarian dysfunction induced by cold exposure,primarily through promoting apoptosis.
文摘Myocardial injury(MI)is a common occurrence in clinical practice caused by various factors such as ischemia,hypoxia,infection,metabolic abnormalities,and inflammation.Such damages are characterized by a reduction in myocardial function and cardiomyocyte death that can result in dangerous outcomes such as cardiac failure and arrhythmias.An endoplasmic reticulum stress(ERS)-induced unfolded protein response(UPR)is triggered by several stressors,and its intricate signaling networks are instrumental in both cell survival and death.Cardiac damage frequently triggers ERS in response to different types of injuries and stress.High levels of ERS can exacerbate myocardial damage by inducing necrosis and apoptosis.To target ERS in MI prevention and treatment,current medical research is focused on identifying effective therapy approaches.Traditional Chinese medicine(TCM)is frequently used because of its vast range of applications and low risk of adverse effects.Various studies have demonstrated that active components of Chinese medicines,including polyphenols,saponins,and alkaloids,can reduce myocardial cell death,inflammation,and modify the ERS pathway,thus preventing and mitigating cardiac injury.Thus,this paper aims to provide a new direction and scientific basis for targeting ERS in MI prevention and treatment.We specifically summarize recent research progress on the regulation mechanism of ERS in MI by active ingredients of TCM.
基金supported by the National Natural Science Foundation of China(92268115,82072506,81874030,82172387,82372371,82371989)the Science and Technology Innovation Program of Hunan Province(2021RC3025)+3 种基金the Natural Science Foundation of Jiangsu Province(BK20230066)the Suzhou Science and Technology Development Plan(SKY2023035,SZM2023008)the Gusu Health Talents Program(GSWS2020023)the Innovation Project for Postgraduate Students of Central South University(1053320221391,1053320231273).
文摘Degenerative musculoskeletal diseases are structural and functional failures of the musculoskeletal system,including osteoarthritis,osteoporosis,intervertebral disc degeneration(IVDD),and sarcopenia.As the global population ages,degenerative musculoskeletal diseases are becoming more prevalent.However,the pathogenesis of degenerative musculoskeletal diseases is not fully understood.Previous studies have revealed that endoplasmic reticulum(ER)stress is a stress response that occurs when impairment of the protein folding capacity of the ER leads to the accumulation of misfolded or unfolded proteins in the ER,contributing to degenerative musculoskeletal diseases.By affecting cartilage degeneration,synovitis,meniscal lesion,subchondral bone remodeling of osteoarthritis,bone remodeling and angiogenesis of osteoporosis,nucleus pulposus degeneration,annulus fibrosus rupture,cartilaginous endplate degeneration of IVDD,and sarcopenia,ER stress is involved in the pathogenesis of degenerative musculoskeletal diseases.Preclinical studies have found that regulation of ER stress can delay the progression of multiple degenerative musculoskeletal diseases.These pilot studies provide foundations for further evaluation of the feasibility,efficacy,and safety of ER stress modulators in the treatment of musculoskeletal degenerative diseases in clinical trials.In this review,we have integrated up-to-date research findings of ER stress into the pathogenesis of degenerative musculoskeletal diseases.In a future perspective,we have also discussed possible directions of ER stress in the investigation of degenerative musculoskeletal disease,potential therapeutic strategies for degenerative musculoskeletal diseases using ER stress modulators,as well as underlying challenges and obstacles in bench-to-beside research.
基金supported by a grant from the National Key Specialty Construction Project in China in 2012,No.[2012]650
文摘Lung injury is the main manifestation of paraquat poisoning. Few studies have addressed brain damage after paraquat poisoning. Ulinastatin is a protease inhibitor that can effectively stabilize lysosomal membranes, prevent cell damage, and reduce the production of free radicals. This study assumed that ulinastatin would exert these effects on brain tissues that had been poisoned with paraquat. Rat models of paraquat poisoning were intraperitoneally injected with ulinastatin. Simultaneously, rats in the control group were administered normal saline. Hematoxylin-eosin staining showed that most hippocampal cells were contracted and nucleoli had disappeared in the paraquat group. Fewer cells in the hippocampus were concentrated and nucleoli had dis- appeared in the ulinastatin group. Western blot assay showed that expressions of GRP78 and cleaved-caspase-3 were significantly lower in the ulinastatin group than in the paraquat group. Immunohistochemical findings showed that CHOP immunoreactivity was significantly lower in the ulinastatin group than in the paraquat group. Terminal deoxynucleotidyl transferase-medi- ated dUTP nick end labeling staining showed that the number of apoptotic cells was reduced in the paraquat and ulinastatin groups. These data confirmed that endoplasmic reticular stress can be induced by acute paraqnat poisoning. Ulinastatin can effectively inhibit this stress as well as cell apoptosis, thereby exerting a neuroprotective effect.
基金State Key Clinical Specialty Construction Project,China
文摘Objective PERK/elF2/CHOP is a major signaling pathway mediating endoplasmic reticulum (ER) stress related with atherosclerosis. Oxidized LDL (ox-LDL) also induces endothelial apoptosis and plays a vital role in the initiation and progression of atherosclerosis. The present study was conducted to explore the regulatory effect of ox-LDL on PERK/elF2a/CHOP signaling pathway in vascular endothelial cells. Methods The effects of ox-LDL on PERK and p-elF2a protein expression of primary human umbilical vein endothelial cells (HUVECs) were investigated by Western blot analysis. PERK gene silencing and selective elF2a phosphatase inhibitor, salubrinal were used to inhibit the process of ox-LDL induced endothelial cell apoptosis, caspase-3 activity, and CHOP mRNA level. Results Ox-LDL treatment significantly increased the expression of PERK, PERK-mediated inactivation of elF2a phosphorylation, and the expression of CHOP, as well as the caspase-3 activity and apoptosis. The effects of ox-LDL were markedly decreased by knocking down PERK with stable transduction of lentiviral shRNA or by selective elF2a phosphatase inhibitor, salubrinal. Conclusion This study provides the first evidence that ox-LDL induces apoptosis in vascular endothelial cells mediated largely via the PERK/elF2a/CHOP ER-stress pathway. It adds new insights into the molecular mechanisms underlying the pathogenesis and progression of atherosclerosis.
基金Supported by National Key Basic Research Development Program,No.2012CB524905National Science and Technology Support Plan Project,No.2012BAI06B04+4 种基金National Natural Science Foundation of China,No.30900677,No.81070315,No.81070366,No.81100278,No.81170378,No.81230012 and No.81270487Zhejiang Provincial Natural Science Foundation of China,No.Y2090463 and No.Y2110026International Science and Technology Cooperation Projects of Zhejiang Province,No.2013C24010Science Foundation of Health Bureau of Zhejiang Province,No.2009A070 and No.2012RCA026Specialized Research Fund for the Doctoral Program of Higher Education,No.20090101120110
文摘Nonalcoholic fatty liver disease(NAFLD)has emerged as a common public health problem in recent decades.However,the underlying mechanisms leading to the development of NAFLD are not fully understood.The endoplasmic reticulum(ER)stress response has recently been proposed to play a crucial role in both the development of steatosis and progression to nonalcoholic steatohepatitis.ER stress is activated to regulate protein synthesis and restore homeostatic equilibrium when the cell is stressed due to the accumulation of unfolded or misfolded proteins.However,delayed or insufficient responses to ER stress may turn physiological mechanisms into pathological consequences,including fat accumulation,insulin resistance,inflammation,and apoptosis,all of which play important roles in the pathogenesis of NAFLD.Therefore,understanding the role of ER stress in the pathogenesis of NAFLD has become a topic of intense investigation.This review highlights the recent findings linking ER stress signaling pathways to the pathogenesis of NAFLD.