期刊文献+
共找到14篇文章
< 1 >
每页显示 20 50 100
机器学习在智能反射面辅助的通信系统中的应用综述
1
作者 司鹏搏 李双缘 +1 位作者 刘畅 李萌 《北京工业大学学报》 CAS 北大核心 2025年第1期87-99,共13页
智能反射面(intelligent reflecting surfaces,IRS)可以通过大量低成本的无源反射元件巧妙地调整信号反射,从而动态改变无线信道,提高通信性能,目前已成为无线通信研究的焦点。然而,由于IRS的加入,整个通信系统变得更加复杂,系统的动态... 智能反射面(intelligent reflecting surfaces,IRS)可以通过大量低成本的无源反射元件巧妙地调整信号反射,从而动态改变无线信道,提高通信性能,目前已成为无线通信研究的焦点。然而,由于IRS的加入,整个通信系统变得更加复杂,系统的动态性也更高,使通信系统面临着许多新的挑战。机器学习(machine learning,ML)具有很强的数据处理与自适应能力,能够不断适应变化的环境和需求,可以很好地应对通信系统中的许多挑战。因此,使用ML解决IRS辅助的通信系统中的问题,已经成为当前研究的重点。基于此,对ML在IRS系统中的应用进行了系统性的概述,从IRS辅助的通信系统中存在的问题入手,分别从反射因子的设计与优化、信道处理与建模、资源分配和管理、安全性增强4个方面对ML在IRS系统中的应用进行阐述和分析,并讨论了将ML应用在IRS系统中的优势及未来的发展趋势与挑战。 展开更多
关键词 智能反射面(intelligent reflecting surfaces IRS) 无线通信 反射因子 信道 资源分配 通信安全 机器学习(machine learning ML)
在线阅读 下载PDF
Machine Learning with Dimensionality Reduction for DDoS Attack Detection
2
作者 Shaveta Gupta Dinesh Grover +3 位作者 Ahmad Ali AlZubi Nimit Sachdeva Mirza Waqar Baig Jimmy Singla 《Computers, Materials & Continua》 SCIE EI 2022年第8期2665-2682,共18页
With the advancement of internet,there is also a rise in cybercrimes and digital attacks.DDoS(Distributed Denial of Service)attack is the most dominant weapon to breach the vulnerabilities of internet and pose a signi... With the advancement of internet,there is also a rise in cybercrimes and digital attacks.DDoS(Distributed Denial of Service)attack is the most dominant weapon to breach the vulnerabilities of internet and pose a significant threat in the digital environment.These cyber-attacks are generated deliberately and consciously by the hacker to overwhelm the target with heavy traffic that genuine users are unable to use the target resources.As a result,targeted services are inaccessible by the legitimate user.To prevent these attacks,researchers are making use of advanced Machine Learning classifiers which can accurately detect the DDoS attacks.However,the challenge in using these techniques is the limitations on capacity for the volume of data and the required processing time.In this research work,we propose the framework of reducing the dimensions of the data by selecting the most important features which contribute to the predictive accuracy.We show that the‘lite’model trained on reduced dataset not only saves the computational power,but also improves the predictive performance.We show that dimensionality reduction can improve both effectiveness(recall)and efficiency(precision)of the model as compared to the model trained on‘full’dataset. 展开更多
关键词 DDoS(Distributed denial of service) INTERNET ML(machine learning) ACCURACY
在线阅读 下载PDF
Fortifying the Digital Bastion: Pioneering Cybersecurity with Dynamic Secrets Management and CMDB Fusion in the Enterprise
3
作者 Gyani Pillala 《Journal of Information Security》 2024年第4期411-418,共8页
In the relentless quest for digital sovereignty, organizations face an unprecedented challenge in safeguarding sensitive information, protecting against cyber threats, and maintaining regulatory compliance. This manus... In the relentless quest for digital sovereignty, organizations face an unprecedented challenge in safeguarding sensitive information, protecting against cyber threats, and maintaining regulatory compliance. This manuscript unveils a revolutionary blueprint for cyber resilience, empowering organizations to transcend the limitations of traditional cybersecurity paradigms and forge ahead into uncharted territories of data security excellence and frictionless secrets management experience. Enter a new era of cybersecurity innovation and continued excellence. By seamlessly integrating secrets based on logical environments and applications (assets), dynamic secrets management orchestrates and automates the secrets lifecycle management with other platform cohesive integrations. Enterprises can enhance security, streamline operations, fasten development practices, avoid secrets sprawl, and improve overall compliance and DevSecOps practice. This enables the enterprises to enhance security, streamline operations, fasten development & deployment practices, avoid secrets spawls, and improve overall volume in shipping software with paved-road DevSecOps Practices, and improve developers’ productivity. By seamlessly integrating secrets based on logical environments and applications (assets), dynamic secrets management orchestrates and automates the application secrets lifecycle with other platform cohesive integrations. Organizations can enhance security, streamline operations, fasten development & deployment practices, avoid secrets sprawl, and improve overall volume in shipping software with paved-road DevSecOps practices. Most importantly, increases developer productivity. 展开更多
关键词 Dynamic Secrets Management Logical Environments Configuration Management Database (CMDB) Secrets Orchestration M2M (machine to machine) Authentication/Authorization Developer Productivity
在线阅读 下载PDF
不同土壤对甘蔗入土切割负载压力影响的研究 被引量:4
4
作者 麻芳兰 李科 +2 位作者 罗晓虎 滕筱 莫德庆 《农机化研究》 北大核心 2022年第1期165-173,共9页
针对甘蔗收获机入土切割系统负载压力的预测适应性差、准确性低的问题,通过正交试验探究在不同土壤类型下切割系统的负载压力与入土切割深度、土壤含水率、甘蔗密度及土壤硬度等因素之间的关系并对各影响因素的显著性进行排序;根据试验... 针对甘蔗收获机入土切割系统负载压力的预测适应性差、准确性低的问题,通过正交试验探究在不同土壤类型下切割系统的负载压力与入土切割深度、土壤含水率、甘蔗密度及土壤硬度等因素之间的关系并对各影响因素的显著性进行排序;根据试验结果搭建基于BP神经网络的负载切割压力的预测模型并进行验证。试验及验证结果表明:各土壤中入土深度、土壤含水率、甘蔗密度对切割系统负载压力影响显著,红壤的土壤硬度影响显著,而冲积壤的入土深度与土壤含水率交互作用影响较大;预测验证得出黄壤、红壤、冲击壤的平均相对误差分别为1.81%、3.46%、3.79%。研究成果可为提高甘蔗收获机入土切割负载压力预测控制系统的适应性、可靠性提供数据支持和理论依据,对其实际应用具有一定参考价值。 展开更多
关键词 甘蔗收获机 负载压力 土壤类型 影响因素 BP神经网络
在线阅读 下载PDF
CFR辛烷值机常见故障原因及处理方法 被引量:2
5
作者 朱对虎 《辽宁化工》 CAS 2012年第10期1066-1067,共2页
通过深入学习CFR辛烷值机的操作规程、检测方法和操作经验积累,将长期在操作中遇到的故障、产生故障的原因、处理方法及日常维护进行了归纳和总结,希望从事辛烷值检测的人员有所启迪和收获。从而来延长设备的寿命、确保设备安全可靠性... 通过深入学习CFR辛烷值机的操作规程、检测方法和操作经验积累,将长期在操作中遇到的故障、产生故障的原因、处理方法及日常维护进行了归纳和总结,希望从事辛烷值检测的人员有所启迪和收获。从而来延长设备的寿命、确保设备安全可靠性、辛烷值准确无误性。 展开更多
关键词 CFR辛烷值机 常见故障 产生原因 处理方法
在线阅读 下载PDF
注塑机结构设计数据库管理系统的实施和应用
6
作者 胡斌 《轻工机械》 CAS 2009年第6期101-103,111,共4页
针对注塑机结构设计工作中对数据管理系统的需求,从优化数据管理,实现协同设计和提高设计效率的目的出发,研究了注塑机结构设计部门级产品数据库管理(Product Data Management,PDM)系统实施和综合应用。从整体上缩短了注塑机产品的开发... 针对注塑机结构设计工作中对数据管理系统的需求,从优化数据管理,实现协同设计和提高设计效率的目的出发,研究了注塑机结构设计部门级产品数据库管理(Product Data Management,PDM)系统实施和综合应用。从整体上缩短了注塑机产品的开发周期。 展开更多
关键词 塑料工业 注塑机 产品数据库管理(PDM) Pro/Intralink应用
在线阅读 下载PDF
Fractional Envelope Analysis for Rolling Element Bearing Weak Fault Feature Extraction 被引量:7
7
作者 Jianhong Wang Liyan Qiao +1 位作者 Yongqiang Ye YangQuan Chen 《IEEE/CAA Journal of Automatica Sinica》 SCIE EI CSCD 2017年第2期353-360,共8页
The bearing weak fault feature extraction is crucial to mechanical fault diagnosis and machine condition monitoring. Envelope analysis based on Hilbert transform has been widely used in bearing fault feature extractio... The bearing weak fault feature extraction is crucial to mechanical fault diagnosis and machine condition monitoring. Envelope analysis based on Hilbert transform has been widely used in bearing fault feature extraction. A generalization of the Hilbert transform, the fractional Hilbert transform is defined in the frequency domain, it is based upon the modification of spatial filter with a fractional parameter, and it can be used to construct a new kind of fractional analytic signal. By performing spectrum analysis on the fractional envelope signal, the fractional envelope spectrum can be obtained. When weak faults occur in a bearing, some of the characteristic frequencies will clearly appear in the fractional envelope spectrum. These characteristic frequencies can be used for bearing weak fault feature extraction. The effectiveness of the proposed method is verified through simulation signal and experiment data. © 2017 Chinese Association of Automation. 展开更多
关键词 Bearings (machine parts) Condition monitoring EXTRACTION Fault detection Feature extraction Frequency domain analysis Hilbert spaces Mathematical transformations Spectrum analysis
在线阅读 下载PDF
New Method for Studying Rock-Breaking Mechanism by Disc Cutters 被引量:1
8
作者 Jianqin Liu Huaicheng Bin +2 位作者 Wei Guo Mengmeng Liu Xuanbin Jia 《Transactions of Tianjin University》 EI CAS 2017年第2期147-156,共10页
Gaining a thorough understanding of the theoretical principles of rock breaking with a disc cutter is a critical issue in tunnel boring machine (TBM) technology. To fully consider the complexity and importance of the ... Gaining a thorough understanding of the theoretical principles of rock breaking with a disc cutter is a critical issue in tunnel boring machine (TBM) technology. To fully consider the complexity and importance of the basic principles of rock breaking during tunnel excavation, in this paper we use a new method, the smooth particle hydrodynamics (SPH), to study the rock-breaking mechanism and verify its accuracy and feasibility. Using the SPH method, we induce the rock fragmentation process with two cutters in synchronous and sequential orders. The results show that when the cutters act on rock sequentially, the second indentation influences the crack evolution of the first indentation. With increased cutter spacing, the second crack gradually becomes independent of the first crack. Under synchronous action of the two cutters, a bursiform nucleus is generated beneath the cutters and the area of the nucleus increases with increased cutter spacing. Whether the cutters act on the rock sequentially or synchronously, we found the optimum cutter spacing of our chosen rock type to be 60 mm. Our analyses results show that the efficiency of sequential rock cutting is superior to synchronous cutting, both with respect to crack evolution and cutter force. © 2017, Tianjin University and Springer-Verlag Berlin Heidelberg. 展开更多
关键词 Boring machines (machine tools) Computer simulation Construction equipment Crack propagation Cracks HYDRODYNAMICS Rock bursts
在线阅读 下载PDF
基于特征结构不变性思想的自适应在线神经网络算法 被引量:1
9
作者 韦磊 姜海富 于化龙 《江苏科技大学学报(自然科学版)》 CAS 北大核心 2022年第1期67-75,共9页
针对传统的采用遗忘因子的在线学习方法难以实时精确地跟踪数据所发生的漂移问题,利用在线数据通常所具有的特征结构不变特性,提升在线学习模型的自适应能力.结合在线离散化和在线聚类技术,追踪和刻画数据的特征结构,并在聚类结构中,采... 针对传统的采用遗忘因子的在线学习方法难以实时精确地跟踪数据所发生的漂移问题,利用在线数据通常所具有的特征结构不变特性,提升在线学习模型的自适应能力.结合在线离散化和在线聚类技术,追踪和刻画数据的特征结构,并在聚类结构中,采用一种类似深度森林算法中的特征构造策略来提取辅助的在线结构特征.通过整合样本的原始特征和额外提取的结构特征共同动态地训练并更新在线神经网络模型,采用在线序列极限学习机算法作为在线神经网络的训练算法,通过8个基准的在线数据集验证算法的有效性、可行性和优越性.实验结果表明:文中算法可很好地追踪数据所发生的概念漂移,并具有较强的自适应性. 展开更多
关键词 在线学习 神经网络 概念漂移 离散化 结构不变性 极限学习机
在线阅读 下载PDF
低温冷害气象预报专家系统的实现
10
作者 李春岩 李宏 袁建平 《黑龙江商学院学报》 1996年第3期25-30,共6页
低温冷害气象预报是气象预报人员经验、知识和推理思维的创造性应用。通过讨论低温冷害气象预报专家系统的结构、功能、推理机制、可信度计算方法以及气象知识表达和数据库技术 。
关键词 推理网络 气象预报 专家系统 低温天气 冷害
在线阅读 下载PDF
基于不同算法预测模型在阻塞性睡眠呼吸暂停低通气综合征中的比较
11
作者 刘康 刘稳 +3 位作者 周鹏 耿诗 神平 赵蕾 《中国耳鼻咽喉头颈外科》 CSCD 2023年第7期467-470,共4页
目的 基于不同算法对阻塞性睡眠呼吸暂停低通气综合征(OSAHS)患者进行建模,比较四种模型的受试者工作曲线下面积(AUC)、准确率、灵敏度与特异性,以建立自动筛选和诊断OSAHS的机器学习预测模型。方法 回顾性分析2019年10月~2022年10月于... 目的 基于不同算法对阻塞性睡眠呼吸暂停低通气综合征(OSAHS)患者进行建模,比较四种模型的受试者工作曲线下面积(AUC)、准确率、灵敏度与特异性,以建立自动筛选和诊断OSAHS的机器学习预测模型。方法 回顾性分析2019年10月~2022年10月于徐州医科大学附属医院行多导睡眠监测的277例患者,以人口学信息、病史、ESS作为预测变量,采用单因素分析筛选出具有明显差异的变量,然后分别建立轻量级梯度提升机(LightGBM)模型、逻辑回归(LR)模型、极限梯度提升(XGBoost)模型及支持向量机(SVM)模型,采用AUC评价模型性能。结果 LR预测的准确率为0.91,AUC为0.97;XGBoost的预测准确率为0.94,AUC为0.97;LightGBM的预测准确率为0.93,AUC为0.98;SVM的准确率为0.89,AUC为0.95。结论 LR、SVM、XGBoost、LightGBM对OSAHS预测效果均较好,LightGBM的效果最佳。 展开更多
关键词 机器学习(machine Learning) 睡眠呼吸暂停 阻塞性(Sleep Apnea Obstructive) 预测模型(predictive models) 轻量级梯度提升机(light gradient boosting machine)
在线阅读 下载PDF
Is the Genie of Artificial Intelligence Technology Out of the Bottle and Control?(A Short Review)
12
作者 Bahman Zohuri Farhang Mossavar Rahmani 《Journal of Energy and Power Engineering》 2023年第2期51-56,共6页
In recent years,AI(artificial intelligence)has made considerable strides,transforming a number of industries and facets of daily life.However,as AI develops more,worries about its potential dangers and unforeseen repe... In recent years,AI(artificial intelligence)has made considerable strides,transforming a number of industries and facets of daily life.However,as AI develops more,worries about its potential dangers and unforeseen repercussions have surfaced.This article investigates the claim that AI technology has broken free from human control and is now unstoppable.We look at how AI is developing right now,what it means for society,and what steps are being taken to reduce the risks that come with it.We seek to highlight the need for responsible development and implementation of this game-changing technology by examining the opportunities and challenges that AI presents. 展开更多
关键词 AI ML(machine learning) DL(deep learning) quantum computer super artificial intelligence artificial intelligence human intelligences technology and society industry and artificial intelligence dependency
在线阅读 下载PDF
Energy Driven by Internet of Things Analytics and Artificial Intelligence
13
作者 Bahman Zohuri Paul E.Bowen +1 位作者 Akansha Agarwal Dinesh Kumar Masoud Moghaddam 《Journal of Energy and Power Engineering》 2022年第1期24-31,共8页
Developing an integrated and intelligent approach to securing the ITE(information technology environment)is an emergent and evolving concern for every organization and consumer entity during the last few decades.Major... Developing an integrated and intelligent approach to securing the ITE(information technology environment)is an emergent and evolving concern for every organization and consumer entity during the last few decades.Major topics of concern include“SI”(security intelligence),“D-DA”(data-driven analytics),“PE”(proven expertise),and“R-TD”(real-time defense)capabilities.“DRBTs”(dynamic response behavior types)include“incident response”,“endpoint management”,“threat intelligence”,“network security”,and“fraud protection”.The consumer demand for electricity as essential public access and service is indexed to population growth estimates.Consumer-driven economies continue to add electrical consumption to their grids even though improvements in lower-power consumption and higher design efficiencies are present in new electric-powered products.Dependence on the production of electrical energy has no peer replacement technology and creates a societal vulnerability to targeted public electrical grid interruptions.When access to,or production of,electrical power is interrupted,the result is a“Mass Effect”every consumer feels with equal distribution.Electric grid security falls directly into the levels of authorized,and unauthorized,access via the“IoT”(Internet of Things)concepts,and the“IoM2M”(Internet of Machine-to-Machine)integration.Electrical grid operations that include production and network management augment each other in order to support the demand for electricity every day either in peak or off-peak,thus cybersecurity plays a big role in the protection of such assets at our disposal.With help from AI(artificial intelligence)integrated into the IoT a resilient system can be built to protect the electric grid system nationwide and will be able to detect and preempt Smart Malware attacks. 展开更多
关键词 Resilience system energy flow energy storage energy grid business intelligence AI CYBERSECURITY decision making in real-time ML(machine learning) DL(deep learning) BD(big data) cloud-based servers for repository and storage of data
在线阅读 下载PDF
物联网业务网关组网方案研究
14
作者 吴丽华 《电信快报(网络与通信)》 2012年第11期7-10,共4页
物联网业务网关南向连接GGSN(网关GPRS〔通用无线分组业务〕支持节点),北向连接业务平台和短彩信网关等,组网相对较复杂。文章主要针对物联网业务网关组网相关问题进行探讨,分析分区域+集中组网和负荷分担组网两种组网方式,从业务开展... 物联网业务网关南向连接GGSN(网关GPRS〔通用无线分组业务〕支持节点),北向连接业务平台和短彩信网关等,组网相对较复杂。文章主要针对物联网业务网关组网相关问题进行探讨,分析分区域+集中组网和负荷分担组网两种组网方式,从业务开展和业务体验角度,指出负荷分担组网更为可行。 展开更多
关键词 M2M(machine MAN to machine Man) 物联网 物联网业务网关 组网
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部