期刊文献+

为您找到了以下期刊:

共找到285篇文章
< 1 2 15 >
每页显示 20 50 100
GUIDE FOR AUTHORS
1
nano materials science 2025年第1期I0003-I0006,共4页
ArticlenArticle types Articles commonly fall into one of three main categories:Fulllength articles,Review articles and Short communications.Full-length articles are original,unpublished primary research.Extensions of ... ArticlenArticle types Articles commonly fall into one of three main categories:Fulllength articles,Review articles and Short communications.Full-length articles are original,unpublished primary research.Extensions of work that has been published previously in short form such as a Communication are usually acceptable.Short communications must contain original and highly significant work whose high novelty warrants rapid publication.Review articles may be an authoritative overview of a field,a comprehensive literature reviews,or tutorial-style reference materials.Reviews are usually invited by the editor,but a topic may be proposed by an author via the editorial office. 展开更多
关键词 full length articles short communications tutorial style reference materials article types rapid publication short communicationsfull length literature reviews original research
在线阅读 下载PDF
Self-charging and long-term face masks leveraging low-cost,biodegradable and sustainable piezoelectric nanofiber membrane
2
作者 Zhenqi Wang Zhuomin Zhang +7 位作者 Zehua Peng Xiaodan Yang Xuemu Li Yao Shan Bingren Liu Xiaote Xu Yongsheng Gao Zhengbao Yang nano materials science 2025年第1期113-122,共10页
The mass discarding face masks has caused severe environmental problems during and after the COVID-19 pandemic.To reduce waste and minimize environmental impact,we present a new face mask featuring selfcharging extend... The mass discarding face masks has caused severe environmental problems during and after the COVID-19 pandemic.To reduce waste and minimize environmental impact,we present a new face mask featuring selfcharging extended service time and fully biodegradable materials.To extend the effective service time,we need to supplement the lost electric charge of the electret layer of face masks,for which task we propose to use the piezoelectric effect and generate electricity from breathing motions.However,existing piezoelectric materials are either toxic,impermeable,rigid,costly,or non-degradable.We synthesize a fully biodegradable piezoelectric membrane composed of polyvinyl alcohol(PVA)and glycine(GLY)via the electrospinning process.Parameters are accurately controlled to ensure that glycine crystallizes into a highly piezoelectricβphase during electrospinning and enables piezoelectric responses of the filter membrane.Tested with the standard 0.3μm particles,face masks made of the PVA-GLY membrane show an outstanding filtration efficiency of 97%,which remains stable over at least 10 h of high-concentration continuous filtration.Furthermore,we demonstrated the biodegradability of PVA-GLY masks,which can degrade completely within a few weeks,compared to commonly used surgical masks requiring over thirty years to be decomposed. 展开更多
关键词 PIEZOELECTRIC Amino acid MICROFIBER FILTRATION COVID ELECTROSPINNING Environment Health
在线阅读 下载PDF
Dimensionality engineering of flower-like bimetallic nanozyme with high peroxidase-activity for naked-eye and on-site detection of acrylamide in thermally processed foods
3
作者 Sen Chen Feifan Liu +3 位作者 Taimei Cai Rong Wang Fangjian Ning Hailong Peng nano materials science 2025年第1期123-133,共11页
Acrylamide(AA)is a neurotoxin and carcinogen that formed during the thermal food processing.Conventional quantification techniques are difficult to realize on-site detection of AA.Herein,a flower-like bimetallic FeCu ... Acrylamide(AA)is a neurotoxin and carcinogen that formed during the thermal food processing.Conventional quantification techniques are difficult to realize on-site detection of AA.Herein,a flower-like bimetallic FeCu nanozyme(FeCuzyme)sensor and portable platform were developed for naked-eye and on-site detection of AA.The FeCuzyme was successfully prepared and exhibited flower-like structure with 3D catalytic centers.Fe/Cu atoms were considered as active center and ligand frameworks were used as cofactor,resulting in collaborative substrate-binding features and remarkably peroxidase-like activity.During the catalytic process,the 3,3′,5,5′-tetrame-thylbenzidine(TMB)oxidation can be quenched by glutathione(GSH),and then restored after thiolene Michael addition reaction between GSH and AA.Given the“on–off–on”effect for TMB oxidation and high PODlike activity,FeCuzyme sensor exhibited a wide linear relationship from 0.50 to 18.00μM(R^(2)=0.9987)and high sensitivity(LOD=0.2360μM)with high stability.The practical application of FeCuzyme sensor was successfully validated by HPLC method.Furthermore,a FeCuzyme portable platform was designed with smartphone/laptop,and which can be used for naked-eye and on-site quantitative determination of AA in real food samples.This research provides a way for rational design of a novel nanozyme-based sensing platform for AA detection. 展开更多
关键词 ACRYLAMIDE Glutathione Bimetallic FeCu nanozyme On-site detection Thermally processed food
在线阅读 下载PDF
Evolutionary prediction of novel biphenylene networks as an anode material for lithium and potassium-ion batteries
4
作者 Adewale Hammed Pasanaje Nirpendra Singh nano materials science 2025年第1期83-89,共7页
The discovery of novel materials with compelling properties is more accessible with the help of advanced computational algorithms.Recent experimental synthesis of the biphenylene network(C_(6))motivated us to discover... The discovery of novel materials with compelling properties is more accessible with the help of advanced computational algorithms.Recent experimental synthesis of the biphenylene network(C_(6))motivated us to discover new BN-doped biphenylene networks(C_(4)BN,C_(2)B_(2)N_(2),and B_(4)N_(4))and their applications in Li(K)-ion batteries using an evolutionary algorithm and the first-principles calculations.The thermodynamic,thermal,and mechanical stability calculations and decomposition energy suggest the experimental synthesis of predicted biphenylene networks.Adding BN in the biphenylene networks shows a transition from metal to semimetal to semiconductor.The BN biphenylene network shows an HSE06 band gap of 3.06 eV,smaller than h-BN.The C_(4)BN and C_(2)B_(2)N_(2)biphenylene networks offer Li(K)adsorption energy of-0.56 eV(-0.81 eV)and-0.14 eV(-0.28 eV),respectively,with a low diffusion barrier of 178 meV(58 meV)and 251 meV(79 meV),and a large diffusion constant of 8.50×10^(-5)cm^(2)=s(8.78×10^(-3)cm^(2)=s)and 5.33×10^(-6)cm^(2)=s(4.12×10^(-3)cm^(2)=s),respectively.The calculated Li(K)theoretical capacity of C_(4)BN and C_(2)B_(2)N_(2)biphenylene networks is 940.21 mA h g^(-1)(899.01 mA h g^(-1))and 768.08 mA h g^(-1)(808.47 mA h g^(-1)),with a low open circuit voltage of 0.34 V(0.23 V),and 0.17 V(0.13 V),resulting in very high energy density of 2576.18 mW h g^(-1)(2445.31 mW h g^(-1))and 2181.35 mW h g^(-1)(2263.72 mW h g^(-1)),respectively.Only a slight volume change of 1.6%confirms the robustness of BN-doped carbon-based biphenylene networks.Our findings present novel 2D BN-doped biphenylene networks and a pathway toward their applications in metal-ion batteries. 展开更多
关键词 Biphenylene networks Ions transport Carbon-based 2D materials Anode materials Metal-ion batteries
在线阅读 下载PDF
Inspired by nature:Bioinspired and biomimetic photocatalysts for biomedical applications
5
作者 Ashkan Bigham Atefeh Zarepour +5 位作者 Moein Safarkhani YunSuk Huh Arezoo Khosravi Navid Rabiee Siavash Iravani Ali Zarrabi nano materials science 2025年第1期1-23,共23页
The field of photocatalysis has witnessed a significant advancement in the development of bioinspired and biomimetic photocatalysts for various biomedical applications,including drug delivery,tissue engineering,cancer... The field of photocatalysis has witnessed a significant advancement in the development of bioinspired and biomimetic photocatalysts for various biomedical applications,including drug delivery,tissue engineering,cancer therapy,and bioimaging.Nature has evolved efficient light-harvesting systems and energy conversion mechanisms,which serve as a benchmark for researchers.However,reproducing such complexity and harnessing it for biomedical applications is a daunting task.It requires a comprehensive understanding of the underlying biological processes and the ability to replicate them synthetically.By utilizing light energy,these photocatalysts can trigger specific chemical reactions,leading to targeted drug release,enhanced tissue regeneration,and precise imaging of biological structures.In this context,addressing the stability,long-term performance,scalability,and costeffectiveness of these materials is crucial for their widespread implementation in biomedical applications.While challenges such as complexity and stability persist,their advantages such as targeted drug delivery and personalized medicine make them a fascinating area of research.The purpose of this review is to provide a comprehensive analysis and evaluation of existing research,highlighting the advancements,current challenges,advantages,limitations,and future prospects of bioinspired and biomimetic photocatalysts in biomedicine. 展开更多
关键词 Bioinspired photocatalysts Nanophotocatalysts Biomedical applications Biomimetic photocatalysts Environmentally-benign strategies
在线阅读 下载PDF
Synergy of compress strain and antioxidant of platinum-copper for enhanced the oxygen reduction performance
6
作者 Jun Zhang Pingjuan Liang +9 位作者 Xinlan Xu Rong Wang Shuyue Liu Chunyuan Wang Boyu Liu Laizheng Luo Meng Jin Huan Liu Huan Yi Shi-Yu Lu nano materials science 2025年第1期105-112,共8页
The development of efficient and durable electrocatalysts for oxygen reduction reaction(ORR)holds a pivotal significance in the successful commercialization of proton exchange membrane fuel cells(PEMFCs)but is still c... The development of efficient and durable electrocatalysts for oxygen reduction reaction(ORR)holds a pivotal significance in the successful commercialization of proton exchange membrane fuel cells(PEMFCs)but is still challenging.Herein,we report a worm-liked PtCu nanocrystals dispersed on nitrogen-doped carbon hollow microspheres(Pt_(0.38)Cu_(0.62)/N-HCS).Benefiting from its structural and compositional advantages,the resulting Pt_(0.38)Cu_(0.62)/N-HCS catalyst delivers exceptional electrocatalytic activity for ORR,with a half-wave potential(E_(1/2))of 0.837 V,a mass activity of 0.672 A mgPt^(-1),and a Tafel slope of 50.66 mV dec^(-1),surpassing that of commercial Pt/C.Moreover,the Pt_(0.38)Cu_(0.62)/N-HCS follows the desired four-electron transfer mechanism throughout the ORR process,thereby displaying a high selectivity for direct reduction of O_(2)to H_(2)O.Remarkably,this catalyst also showcases high stability,with only a 25 mV drop in E_(1/2)after 10,000 cycles in an acidic electrolyte.Theoretical calculations elucidate the incorporation of Cu into Pt lattice induces compressive strain,which effectively tailors the d band center of Pt active sites and strengthens the surface chemisorption of O_(2)molecules on PtCu alloys.Consequently,the Pt_(0.38)Cu_(0.62)/N-HCS catalyst exhibits an improved ability to adsorb O_(2)molecules on its surface,accelerating the reaction kinetics of O_(2)conversion to*OOH.Additionally,Cu atoms,not only serving as sacrificial anode,undergo preferential oxidation during PEMFCs operation when compared to Pt,but also the stable Cu species in PtCu alloys contributes significantly to maintaining the strain effect,collectively enhancing both activity and durability.Overall,this research offers an effective and promising approach to enhance the activity and stability of Pt-based ORR electrocatalysts in PEMFCs. 展开更多
关键词 PtCu alloy Compressive strain Oxygen reduction reaction Activity and durability Cu oxidation
在线阅读 下载PDF
Environmentally friendly tailor-made oleo-dispersions of electrospun cellulose acetate propionate nanostructures in castor oil for lubricant applications
7
作者 M.A.Martín-Alfonso J.F.Rubio-Valle +2 位作者 J.P.Hinestroza J.E.Martín-Alfonso J.M.Franco nano materials science 2025年第1期90-104,共15页
The aim of this work is to find an alternative lubricating grease formulation that can be produced from renewable and biodegradable sources with minimal risks to human health and the environment.We used a castor oil a... The aim of this work is to find an alternative lubricating grease formulation that can be produced from renewable and biodegradable sources with minimal risks to human health and the environment.We used a castor oil and electrospun cellulose acetate propionate(CAp)as raw materials.We hypothesized that the acetyl and propionyl groups could provide an adequate chemical compatibility with the castor oil and that the electrospun nanostructures could enable improved physical stability by creating a variety of morphologies allowing the tailoring of the rheological and tribological properties of the resulting greases.The experimental results show that the use of electrospun CAp nanostructures can indeed yield physically stable formulations,even when used at low concentrations(3 wt%).The resulting dispersions went through structural transitions due to changes in the thickener morphologies and/or concentration,as shown by oscillatory rheology,oil holding capacity,tackiness,and lubrication performance in metal–metal contact.We found that the formulations,containing smooth or porous CAp nanofibers,at 5 wt%as a thickener,possess suitable rheological and tribological properties with a performance comparable to that of traditional lithium lubricating greases. 展开更多
关键词 Cleaner products Green lubricants NANOFIBERS Rheology TRIBOLOGY
在线阅读 下载PDF
Photon upconversion tuning through energy migration in lanthanides sensitized nanoparticles
8
作者 Xingwen Cheng Jiangshan Luo Federico Rosei nano materials science 2025年第1期134-144,共11页
Lanthanide-sensitized upconverting nanoparticles(UCNPs)are widely studied because of their unusual optical characteristics,such as large antenna-generated anti-Stokes shifts,high photostability,and narrow emission ban... Lanthanide-sensitized upconverting nanoparticles(UCNPs)are widely studied because of their unusual optical characteristics,such as large antenna-generated anti-Stokes shifts,high photostability,and narrow emission bandwidths,which can be harnessed for a variety of applications including bioimaging,sensing,information security and high-level anticounterfeiting.The diverse requirements of these applications typically require precise control over upconversion luminescence(UCL).Recently,the concept of energy migration upconversion has emerged as an effective approach to modulate UCL for various lanthanide ions.Moreover,it provides valuable insights into the fundamental comprehension of energy transfer mechanisms on the nanoscale,thereby contributing to the design of efficient lanthanide-sensitized UCNPs and their practical applications.Here we present a comprehensive overview of the latest developments in energy migration upconversion in lanthanide-sensitized nanoparticles for photon upconversion tuning,encompassing design strategies,mechanistic investigations and applications.Additionally,some future prospects in the field of energy migration upconversion are also discussed. 展开更多
关键词 LANTHANIDES Upconversion tuning Energy migration Core-shell structures NANOPARTICLES
在线阅读 下载PDF
Ag anchored mesoporous carbon hollow sphere in Cellulose nanofibers/MXene composite films for high-performance electromagnetic interference shielding
9
作者 Wenting Tao Wenqin Shao +5 位作者 Meng Ma Si Chen Yanqin Shi Huiwen He Yulu Zhu Xu Wang nano materials science 2025年第1期65-73,共9页
The increasingly serious electromagnetic(EM)radiation and related pollution effects have gradually attracted people's attention in the information age.Hence,it's crucial to develop adaptive shielding materials... The increasingly serious electromagnetic(EM)radiation and related pollution effects have gradually attracted people's attention in the information age.Hence,it's crucial to develop adaptive shielding materials with minimum EM waves(EMW)reflection.In this paper,Ag nanoparticles loaded mesoporous carbon hollow spheres(MCHS@Ag)were synthesized by chemical reduction method,and cellulose nanofibers(CNF)/MXene/MCHS@Ag homogeneous composites were prepared.The total EM interference shielding efficiency(SET)of CNF/MXene/MCHS@Ag composite film was 32.83 dB(at 12.4 GHz),and the absorption effectiveness(SEA)was improved to 26.6 dB,which was 63.1%and 195.5%higher than that of CNF/MXene/MCHS composite film.The low dielectric property of MCHS effectively optimized the impedance matching between the composites and air.The hollow porous structure prolonged the transmission path of EMW and increased the absorption loss of the composites.At the same time,Ag nanoparticles located the MCHS were helpful to construct the internal conductive path overcoming the damage of the conductive property caused by the low dielectric of MCHS.This research adopts a straightforward method to construct a lightweight,pliable,and mesoporous composites for EMI shielding,which serves a crucial role in the current era of severe EM pollution. 展开更多
关键词 EMI shielding Porous structure Low reflection Film Ag anchored
在线阅读 下载PDF
Impact of functional groups in spacer cations on the properties of PEA-based 2D monolayer halide perovskites
10
作者 Chenchen Li Xian Chen +3 位作者 Tan Jin Tianmin Wu Jun Chen Wei Zhuang nano materials science 2025年第1期74-82,共9页
Incorporating low-dimensionalization technologies effectively tackle the challenge of inadequate long-term stability in hybrid halide perovskites,however their wide bandgap and strong quantum well confinement remain s... Incorporating low-dimensionalization technologies effectively tackle the challenge of inadequate long-term stability in hybrid halide perovskites,however their wide bandgap and strong quantum well confinement remain substantial obstacle for various optoelectronic applications.Addressing these issues without compromising longterm stability has emerged as a pivotal focus in materials science,in particular exploring the effects of the functional groups within spacer cations.Our simulations reveal that the robustπ-πstacking interactions involving PEA^(+)and the strong hydrogen bonding interactions between PEA^(+)and MX^(4-)_(6)contribute to narrowing the electronic bandgap in 2D monolayer PEA_(2)MX_(4)(e.g.2D monolayer PEA_(2)SnI_(4):1.34 eV)for reasonable visible-light absorption while simultaneously ensuring their favorable long-term stability.Moreover,the delocalized orbitals and relatively high dielectric constants in PEA^(+),attributed to the conjugated benzene ring,has been observed to weaken the potential barrier,exciton binding effect and quantum well confinement in 2D monolayer PEA2MX4,thus facilitating photogenerated electron-hole separations and out-of-plane carrier transport.The impact of spacer cations on the optoelectronic and transport properties of 2D monolayer perovskites highlights the critical role of meticulously chosen and well-designed spacer cations,especially functional groups,in shaping their photophysical properties and ensuring long-term stability even under extremely operating conditions. 展开更多
关键词 Long-term stability Exciton binding effect Quantum transport First-principles calculations Quantum well confinement
在线阅读 下载PDF
Recent advances of photolithography patterning of quantum dots for micro-display applications
11
作者 Xuemin Kong Xiaotong Fan +6 位作者 Yuhui Wang Yunshu Luo Yihang Chen Tingzhu Wu Zhong Chen Yue Lin Shuli Wang nano materials science 2025年第1期49-64,共16页
The preparation of red,green,and blue quantum dot(QD)pixelated arrays with high precision,resolution,and brightness poses a significant challenge on the development of advanced micro-displays for virtual,augmented,and... The preparation of red,green,and blue quantum dot(QD)pixelated arrays with high precision,resolution,and brightness poses a significant challenge on the development of advanced micro-displays for virtual,augmented,and mixed reality applications.Alongside the controlled synthesis of high-performance QDs,a reliable QD patterning technology is crucial in overcoming this challenge.Among the various methods available,photolithography-based patterning technologies show great potentials in producing ultra-fine QD patterns at micron scale.This review article presents the recent advancements in the field of QD patterning using photolithography techniques and explores their applications in micro-display technology.Firstly,we discuss QD patterning through photolithography techniques employing photoresist(PR),which falls into two categories:PRassisted photolithography and photolithography of QDPR.Subsequently,direct photolithography techniques based on photo-induced crosslinking of photosensitive groups and photo-induced ligand cleavage mechanisms are thoroughly reviewed.Meanwhile,we assess the performance of QD arrays fabricated using these photolithography techniques and their integration into QD light emitting diode display devices as well as color conversionbased micro light emitting diode display devices.Lastly,we summarize the most recent developments in this field and outline future prospects. 展开更多
关键词 Quantum dot PHOTOLITHOGRAPHY Patterning technology Micro-display
在线阅读 下载PDF
Polyoxometalate-based peroxidase-like nanozymes
12
作者 Xiangwei Liu Tiedong Sun +2 位作者 Yuan Sun Alina Manshina Lei Wang nano materials science 2025年第1期24-48,共25页
Nanozymes,as a new generation of artificial enzymes,exhibit similar chemical properties,catalytic efficiency,and reaction kinetics to natural enzymes.Nanozymes can offer several advantages over natural enzymes,includi... Nanozymes,as a new generation of artificial enzymes,exhibit similar chemical properties,catalytic efficiency,and reaction kinetics to natural enzymes.Nanozymes can offer several advantages over natural enzymes,including the decreased cost,the increased stability,and the enhanced catalytic activity.These advantages have positioned nanozymes as a research focus in the fields of chemistry,materials and biomedicine.Polyoxometalates(POMs)and their composites have been found to possess excellent catalytic capabilities as peroxidase mimics.Given this,this review aims to provide a comprehensive overview of the POM-based nanozymes,covering their structural categorization,evolution,and various applications over the past decade.The dynamic nature of this field would promise the intriguing challenges and opportunities in the future.Additionally,we address the existing issues with the POM-based peroxidase-like enzymes and suggest the potential directions for future research.This review would serve as a valuable resource for researchers seeking to develop the improved therapeutic and diagnostic technologies using the POM-based nanozymes,thereby advancing the fields of biochemistry and materials science. 展开更多
关键词 Polyoxometalates Peroxidase Nanozymes NANOMATERIALS H_(2)O_(2)
在线阅读 下载PDF
Nano Materials Science Editorial Board
13
nano materials science 2025年第1期I0002-I0002,共1页
在线阅读 下载PDF
Recent advances in graphene-based phase change composites for thermal energy storage and management 被引量:3
14
作者 Qiang Zhu Pin Jin Ong +4 位作者 Si Hui Angela Goh Reuben J.Yeo Suxi Wang Zhiyuan Liu Xian Jun Loh nano materials science EI CAS CSCD 2024年第2期115-138,共24页
Energy storage and conservation are receiving increased attention due to rising global energy demands.Therefore,the development of energy storage materials is crucial.Thermal energy storage(TES)systems based on phase ... Energy storage and conservation are receiving increased attention due to rising global energy demands.Therefore,the development of energy storage materials is crucial.Thermal energy storage(TES)systems based on phase change materials(PCMs)have increased in prominence over the past two decades,not only because of their outstanding heat storage capacities but also their superior thermal energy regulation capability.However,issues such as leakage and low thermal conductivity limit their applicability in a variety of settings.Carbon-based materials such as graphene and its derivatives can be utilized to surmount these obstacles.This study examines the recent advancements in graphene-based phase change composites(PCCs),where graphene-based nanostructures such as graphene,graphene oxide(GO),functionalized graphene/GO,and graphene aerogel(GA)are incorporated into PCMs to substantially enhance their shape stability and thermal conductivity that could be translated to better storage capacity,durability,and temperature response,thus boosting their attractiveness for TES systems.In addition,the applications of these graphene-based PCCs in various TES disciplines,such as energy conservation in buildings,solar utilization,and battery thermal management,are discussed and summarized. 展开更多
关键词 Phase change material NANOCOMPOSITES Solar energy Sustainable energy Thermo-regulation
在线阅读 下载PDF
A dynamic database of solid-state electrolyte(DDSE)picturing all-solid-state batteries 被引量:2
15
作者 Fangling Yang Egon Campos dos Santos +5 位作者 Xue Jia Ryuhei Sato Kazuaki Kisu Yusuke Hashimoto Shin-ichi Orimo Hao Li nano materials science EI CAS CSCD 2024年第2期256-262,共7页
All-solid-state batteries(ASSBs)are a class of safer and higher-energy-density materials compared to conventional devices,from which solid-state electrolytes(SSEs)are their essential components.To date,investigations ... All-solid-state batteries(ASSBs)are a class of safer and higher-energy-density materials compared to conventional devices,from which solid-state electrolytes(SSEs)are their essential components.To date,investigations to search for high ion-conducting solid-state electrolytes have attracted broad concern.However,obtaining SSEs with high ionic conductivity is challenging due to the complex structural information and the less-explored structure-performance relationship.To provide a solution to these challenges,developing a database containing typical SSEs from available experimental reports would be a new avenue to understand the structureperformance relationships and find out new design guidelines for reasonable SSEs.Herein,a dynamic experimental database containing>600 materials was developed in a wide range of temperatures(132.40–1261.60 K),including mono-and divalent cations(e.g.,Li^(+),Na^(+),K^(+),Ag^(+),Ca^(2+),Mg^(2+),and Zn^(2+))and various types of anions(e.g.,halide,hydride,sulfide,and oxide).Data-mining was conducted to explore the relationships among different variates(e.g.,transport ion,composition,activation energy,and conductivity).Overall,we expect that this database can provide essential guidelines for the design and development of high-performance SSEs in ASSB applications.This database is dynamically updated,which can be accessed via our open-source online system. 展开更多
关键词 Solid-state electrolyte(SSE) All-solid-state battery(ASSB) Ionic conductivity Dynamic database Machine learning
在线阅读 下载PDF
Recent advances in cobalt phosphide-based materials for electrocatalytic water splitting:From catalytic mechanism and synthesis method to optimization design 被引量:1
16
作者 Rongrong Deng Mengwei Guo +1 位作者 Chaowu Wang Qibo Zhang nano materials science EI CAS CSCD 2024年第2期139-173,共35页
Electrochemical water splitting has long been considered an effective energy conversion technology for trans-ferring intermittent renewable electricity into hydrogen fuel,and the exploration of cost-effective and high... Electrochemical water splitting has long been considered an effective energy conversion technology for trans-ferring intermittent renewable electricity into hydrogen fuel,and the exploration of cost-effective and high-performance electrocatalysts is crucial in making electrolyzed water technology commercially viable.Cobalt phosphide(Co-P)has emerged as a catalyst of high potential owing to its high catalytic activity and durability in water splitting.This paper systematically reviews the latest advances in the development of Co-P-based materials for use in water splitting.The essential effects of P in enhancing the catalytic performance of the hydrogen evolution reaction and oxygen evolution reaction are first outlined.Then,versatile synthesis techniques for Co-P electrocatalysts are summarized,followed by advanced strategies to enhance the electrocatalytic performance of Co-P materials,including heteroatom doping,composite construction,integration with well-conductive sub-strates,and structure control from the viewpoint of experiment.Along with these optimization strategies,the understanding of the inherent mechanism of enhanced catalytic performance is also discussed.Finally,some existing challenges in the development of highly active and stable Co-P-based materials are clarified,and pro-spective directions for prompting the wide commercialization of water electrolysis technology are proposed. 展开更多
关键词 Co-P electrocatalysts Water splitting Hydrogen production Catalytic mechanism Synthesis technique Optimization design
在线阅读 下载PDF
Tuning the reactivity of TiO_(2)layer with uniform distribution of Sub-5 nm Fe_(2)O_(3)particles via in situ voltage-assisted oxidation for robust catalytic reduction 被引量:1
17
作者 Nisa Nashrah Abdelkarim Chaouiki +1 位作者 Wail Al Zoubi Young Gun Ko nano materials science EI CAS CSCD 2024年第2期223-234,共12页
The trade-off between efficiency and stability has limited the application of TiO_(2)as a catalyst due to its poor surface reactivity.Here,we present a modification of a TiO_(2)layer with highly stable Sub-5 nm Fe_(2)... The trade-off between efficiency and stability has limited the application of TiO_(2)as a catalyst due to its poor surface reactivity.Here,we present a modification of a TiO_(2)layer with highly stable Sub-5 nm Fe_(2)O_(3)nanoparticles(NP)by modulating its structure-surface reactivity relationship to attain efficiency-stability balance via a voltage-assisted oxidation approach.In situ simultaneous oxidation of the Ti substrate and Fe precursor using high-energy plasma driven by high voltage resulted in uniform distribution of Fe_(2)O_(3)NP embedded within porous TiO_(2)layer.Comprehensive surface characterizations with density functional theory demonstrated an improved electronic transition in TiO_(2)due to the presence of surface defects from reactive oxygen species and possible charge transfer from Ti to Fe;it also unexpectedly increased the active site in the TiO_(2)layer due to uncoordinated electrons in Sub-5 nm Fe_(2)O_(3)NP/TiO_(2)catalyst,thereby enhancing the adsorption of chemical functional groups on the catalyst.This unique embedded structure exhibited remarkable improvement in reducing 4-nitrophenol to 4-aminophenol,achieving approximately 99%efficiency in 20 min without stability decay after 20 consecutive cycles,outperforming previously reported TiO_(2)-based catalysts.This finding proposes a modified-electrochemical strategy enabling facile construction of TiO_(2)with nanoscale oxides extandable to other metal oxide systems. 展开更多
关键词 Titanium dioxide Oxide nanoparticle Electrochemical oxidation Surface reactivity Efficiency Stability
在线阅读 下载PDF
MXene multi-functionalization of polyrotaxane based PCMs and the applications in electronic devices thermal management 被引量:1
18
作者 Guangzhong Yin Alba Marta Lopez +5 位作者 Ignacio Collado Antonio Vazquez-Lopez Xiang Ao Jose Hobson Silvia G.Prolongo Deyi Wang nano materials science EI CAS CSCD 2024年第5期495-503,共9页
The aim of this work was to improve the thermal conductivity and electromagnetic shielding of the leakage proof phase change materials(PCMs),in which a polyrotaxane(PLR)was used as a support material to encapsulate PE... The aim of this work was to improve the thermal conductivity and electromagnetic shielding of the leakage proof phase change materials(PCMs),in which a polyrotaxane(PLR)was used as a support material to encapsulate PEG 1k or PEG 6k and MXene as multi-functional filler.The PCMs can be processed conveniently by a hot press and the PEG 1k containing samples showed excellent flexibility.We conducted a systematic evaluation of the phase transition behavior of the material,thermal conductivity and electromagnetic shielding performance tests.Notably,the PCMs achieved a high enthalpy values(123.9–159.6 J/g).The PCMs exhibited an increase of 44.3%,and 137.5%in thermal conductivity values with higher MXene content(5 wt%)for PLR-PEG6k and PLR-PEG1k,respectively,and show high shape stability and no leakage during and after phase transition.The introduction of MXene can significantly improve the electromagnetic shielding performance of PCM composites.Typically,higher conductive samples(samples which contain high MXene contents)offer a higher EMI SE shielding,reaching a maximum of 4.67 dB at 5.6 GHz for PLR-1K-MX5.These improvements solve the main problems of organic PEG based PCMs,thus making PLR-PEG-MXene based PCMs good candidates for thermoregulators of both solid-state disks and smart phone.It is worth pointing out that the sample PLR-1k-MX5 can decrease 4.3C of the reference temperature during cellphone running.Moreover,the temperature of the protecting sheet in the simulated solid state disk with PCM was significantly lower(showing a decreasing of 7.9℃)compared with the blank sample. 展开更多
关键词 Phase change materials Thermal regulation MXene POLYROTAXANE NANOCOMPOSITES
在线阅读 下载PDF
Utilizing a defective MgO layer for engineering multifunctional Co-MOF hybrid materials with tailored leaf-like and polyhedral structures for optimal electrochemical and photocatalytic activities 被引量:1
19
作者 Mohammad Aadil Muhammad Ali Khan +1 位作者 Safira Ananda Repycha Mosab Kaseem nano materials science EI CAS CSCD 2024年第5期548-564,共17页
The hybridization of metal-organic framework(MOF)with inorganic layers would lead to the discovery of novel hybrid materials that can provide a compelling strategy for enhancing its photocatalytic and electrochemical ... The hybridization of metal-organic framework(MOF)with inorganic layers would lead to the discovery of novel hybrid materials that can provide a compelling strategy for enhancing its photocatalytic and electrochemical response.In the present study,a highly efficient multifunctional hybrid material was developed by exploiting the defective layer formed on AZ31 Mg alloy through plasma electrolytic oxidation(PEO)as a nucleation and growth site for Co-MOF.The concentrations of the organic linker 2-Methylimidazole(2,MIm)and cobalt nitrate as a source of Co^(2+) ions were varied to control the growth of the obtained Co-MOF.Lower concentrations of the 2,MIm ligand favored the formation of leaf-like MOF structures through an anisotropic,two-dimensional growth,while higher concentrations led to rapid,isotropic nucleation and the creation of polyhedral Co-MOF structures.The sample characterized by polyhedral Co-MOF structures exhibited superior electrochemical stability,with the lowest corrosion current density(3.11×10^(-9) A/cm^(2))and the highest top layer resistance(2.34×10^(6)Ωcm^(2)),and demonstrated outstanding photocatalytic efficiency,achieving a remarkable 99.98%degradation of methylene blue,an organic pollutant,in model wastewater.To assess the active adsorption sites of the Co-MOF,density functional theory(DFT)was utilized.This study explores the changes in morphologies of the coatings of Co-MOF with the change of solution concentration to form coatings with enhanced properties on the metallic substrate,which could establish the groundwork for the development of next-generation multifunctional frameworks with diverse applications. 展开更多
关键词 Multifunctional layer MOF Polyhedral structures Corrosion Photocatalytic activity
在线阅读 下载PDF
Recent advances in transition metal phosphide materials:Synthesis and applications in supercapacitors 被引量:1
20
作者 Ge Li Yu Feng +3 位作者 Yi Yang Xiaoliang Wu Xiumei Song Lichao Tan nano materials science EI CAS CSCD 2024年第2期174-192,共19页
Supercapacitors(SCs)are considered promising energy storge systems because of their outstanding power density,fast charge and discharge rate and long-term cycling stability.The exploitation of cheap and efficient elec... Supercapacitors(SCs)are considered promising energy storge systems because of their outstanding power density,fast charge and discharge rate and long-term cycling stability.The exploitation of cheap and efficient electrode materials is the key to improve the performance of supercapacitors.As the battery-type materials,transition metal phosphides(TMPs)possess high theoretical specific capacity,good electrical conductivity and superior structural stability,which have been extensively studied to be electrode materials for supercapacitors.In this review,we summarize the up-to-date progress on TMPs materials from diversified synthetic methods,diverse nanostructures and several prominent TMPs and their composites in application of supercapacitors.In the end,we also propose the remaining challenges toward the rational discovery and synthesis of high-performance TMP electrodes materials for energy storage. 展开更多
关键词 Transition metal phosphides Cobalt phosphide Nickel phosphides Electrode materials SUPERCAPACITOR
在线阅读 下载PDF
上一页 1 2 15 下一页 到第
使用帮助 返回顶部