人脸特征蕴含诸多信息,在面部属性和情感分析任务中具有重要价值,而面部特征的多样性和复杂性使人脸分析任务变得困难。针对上述难题,从面部细粒度特征角度出发,提出基于上下文通道注意力机制的人脸属性估计和表情识别(FAER)模型。首先...人脸特征蕴含诸多信息,在面部属性和情感分析任务中具有重要价值,而面部特征的多样性和复杂性使人脸分析任务变得困难。针对上述难题,从面部细粒度特征角度出发,提出基于上下文通道注意力机制的人脸属性估计和表情识别(FAER)模型。首先,构建基于ConvNext的局部特征编码骨干网络,并运用骨干网络编码局部特征的有效性来充分表征人脸局部特征之间的差异性;其次,提出上下文通道注意力(CC Attention)机制,通过动态自适应调整特征通道上的权重信息,表征深度特征的全局和局部特征,从而弥补骨干网络编码全局特征能力的不足;最后,设计不同分类策略,针对人脸属性估计(FAE)和面部表情识别(FER)任务,分别采用不同损失函数组合,以促使模型学习更多的面部细粒度特征。实验结果表明,所提FAER模型在人脸属性数据集CelebA(CelebFaces Attributes)上取得了91.87%的平均准确率,相较于次优模型SwinFace(Swin transformer for Face)高出0.55个百分点;在面部表情数据集RAF-DB和AffectNet上分别取得了91.75%和66.66%的准确率,相较于次优模型TransFER(Transformers for Facial Expression Recognition)分别高出0.84和0.43个百分点。展开更多
针对城市场景下载人电动垂直起降飞行器(electric vertical takeoff and landing,eVTOL)路径规划问题进行了研究。首先,使用危险度栅格法进行三维城市空间建模,对选定型号的eVTOL飞行器,以航程、运行风险和高度变化为目标函数,结合飞行...针对城市场景下载人电动垂直起降飞行器(electric vertical takeoff and landing,eVTOL)路径规划问题进行了研究。首先,使用危险度栅格法进行三维城市空间建模,对选定型号的eVTOL飞行器,以航程、运行风险和高度变化为目标函数,结合飞行器自身特性及环境限制,构建了多约束条件的载人eVTOL路径规划模型。然后,设计了一种改进人工电场算法(im-proved artificial electric field algorithm,IAEFA),在传统人工电场算法(artificial electric field algorithm,AEFA)的基础上增加了自适应库伦参数,并在库伦常数的计算中引入递减系数,以此进行仿真求解。实验结果显示,所构建的模型可以达到预期效果。使用改进算法进行路径规划的求解效果更优,相较传统粒子群算法和人工电场法,航程更短,高度变化更小且运行更为安全。最后,根据对照实验确定递减系数的取值,当递减系数取值为1.5时,改进算法的求解效果最优。展开更多
多特征模态融合时存在噪声的叠加,而为减小模态间的差异采用的级联方式的结构也未充分利用模态间的特征信息,因此设计一种跨模态双流交替交互网络(DAINet)方法。首先,构建双流交替增强(DAE)模块,以交互双分支形式融合模态特征,并通过学...多特征模态融合时存在噪声的叠加,而为减小模态间的差异采用的级联方式的结构也未充分利用模态间的特征信息,因此设计一种跨模态双流交替交互网络(DAINet)方法。首先,构建双流交替增强(DAE)模块,以交互双分支形式融合模态特征,并通过学习模态数据的映射关系,以红外-可见光-红外(IR-VIS-IR)和可见光-红外-可见光(VIS-IR-VIS)的双向反馈调节实现模态间噪声的交叉抑制;然后,构建跨模态特征交互(CMFI)模块,并引入残差结构将红外-可见光模态内以及模态间的低层特征和高层特征进行有效融合,从而减小模态间的差异并充分利用模态间的特征信息;最后,在自建红外-可见光多模态台风数据集及RGB-NIR多模态公开场景数据集上进行实验,以验证DAE模块和CMFI模块的有效性。实验结果表明,与简单级联融合方法相比,所提的基于DAINet的特征融合方法在自建台风数据集上的红外模态和可见光模态上的总体分类精度分别提高了6.61和3.93个百分点,G-mean值分别提高了6.24和2.48个百分点,表明所提方法在类别不均衡分类任务上的通用性;所提方法在RGB-NIR数据集上的2种测试模态下的总体分类精度分别提高了13.47和13.90个百分点。同时,所提方法在2个数据集上分别与IFCNN(general Image Fusion framework based on Convolutional Neural Network)和DenseFuse方法进行对比的实验结果表明,所提方法在自建台风数据集上的2种测试模态下的总体分类精度分别提高了9.82、6.02和17.38、1.68个百分点。展开更多
文摘在对享受基于位置服务(LBS)用户进行位置隐私保护时,传统k-匿名技术在执行匿名操作时没有全面考虑时间开销和位置背景信息。针对上述问题,提出了一种基于Alt-Geohash编码的k-匿名位置隐私保护方案(k-anonymous location privacy protection scheme based on Alt-Geohash coding,KLPPS-AGC)。首先,通过位置泛化和Alt-Geohash编码技术实现对历史数据的快速检索;其次,根据历史查询概率筛选出能与用户构建高位置熵的位置;再次,利用海伦公式改善匿名集的位置分散度;最后,构建安全匿名集实现对用户的位置隐私保护。实验证明,该方案拥有较低的时间开销和较高的隐私性。
文摘人脸特征蕴含诸多信息,在面部属性和情感分析任务中具有重要价值,而面部特征的多样性和复杂性使人脸分析任务变得困难。针对上述难题,从面部细粒度特征角度出发,提出基于上下文通道注意力机制的人脸属性估计和表情识别(FAER)模型。首先,构建基于ConvNext的局部特征编码骨干网络,并运用骨干网络编码局部特征的有效性来充分表征人脸局部特征之间的差异性;其次,提出上下文通道注意力(CC Attention)机制,通过动态自适应调整特征通道上的权重信息,表征深度特征的全局和局部特征,从而弥补骨干网络编码全局特征能力的不足;最后,设计不同分类策略,针对人脸属性估计(FAE)和面部表情识别(FER)任务,分别采用不同损失函数组合,以促使模型学习更多的面部细粒度特征。实验结果表明,所提FAER模型在人脸属性数据集CelebA(CelebFaces Attributes)上取得了91.87%的平均准确率,相较于次优模型SwinFace(Swin transformer for Face)高出0.55个百分点;在面部表情数据集RAF-DB和AffectNet上分别取得了91.75%和66.66%的准确率,相较于次优模型TransFER(Transformers for Facial Expression Recognition)分别高出0.84和0.43个百分点。
文摘针对城市场景下载人电动垂直起降飞行器(electric vertical takeoff and landing,eVTOL)路径规划问题进行了研究。首先,使用危险度栅格法进行三维城市空间建模,对选定型号的eVTOL飞行器,以航程、运行风险和高度变化为目标函数,结合飞行器自身特性及环境限制,构建了多约束条件的载人eVTOL路径规划模型。然后,设计了一种改进人工电场算法(im-proved artificial electric field algorithm,IAEFA),在传统人工电场算法(artificial electric field algorithm,AEFA)的基础上增加了自适应库伦参数,并在库伦常数的计算中引入递减系数,以此进行仿真求解。实验结果显示,所构建的模型可以达到预期效果。使用改进算法进行路径规划的求解效果更优,相较传统粒子群算法和人工电场法,航程更短,高度变化更小且运行更为安全。最后,根据对照实验确定递减系数的取值,当递减系数取值为1.5时,改进算法的求解效果最优。
文摘多特征模态融合时存在噪声的叠加,而为减小模态间的差异采用的级联方式的结构也未充分利用模态间的特征信息,因此设计一种跨模态双流交替交互网络(DAINet)方法。首先,构建双流交替增强(DAE)模块,以交互双分支形式融合模态特征,并通过学习模态数据的映射关系,以红外-可见光-红外(IR-VIS-IR)和可见光-红外-可见光(VIS-IR-VIS)的双向反馈调节实现模态间噪声的交叉抑制;然后,构建跨模态特征交互(CMFI)模块,并引入残差结构将红外-可见光模态内以及模态间的低层特征和高层特征进行有效融合,从而减小模态间的差异并充分利用模态间的特征信息;最后,在自建红外-可见光多模态台风数据集及RGB-NIR多模态公开场景数据集上进行实验,以验证DAE模块和CMFI模块的有效性。实验结果表明,与简单级联融合方法相比,所提的基于DAINet的特征融合方法在自建台风数据集上的红外模态和可见光模态上的总体分类精度分别提高了6.61和3.93个百分点,G-mean值分别提高了6.24和2.48个百分点,表明所提方法在类别不均衡分类任务上的通用性;所提方法在RGB-NIR数据集上的2种测试模态下的总体分类精度分别提高了13.47和13.90个百分点。同时,所提方法在2个数据集上分别与IFCNN(general Image Fusion framework based on Convolutional Neural Network)和DenseFuse方法进行对比的实验结果表明,所提方法在自建台风数据集上的2种测试模态下的总体分类精度分别提高了9.82、6.02和17.38、1.68个百分点。