现有无源定位闭式算法均考虑视距(Line of Sight,LOS)环境,无法直接应用于存在遮挡的城市环境低空无人机目标定位等场景,同时,非视距(Non-Line of Sight,NLOS)优化定位算法计算效率较低。针对这些问题,本文开展中继辅助下的单站目标定...现有无源定位闭式算法均考虑视距(Line of Sight,LOS)环境,无法直接应用于存在遮挡的城市环境低空无人机目标定位等场景,同时,非视距(Non-Line of Sight,NLOS)优化定位算法计算效率较低。针对这些问题,本文开展中继辅助下的单站目标定位研究,通过引入中继收发器对目标信号进行转发,构造两条路径从而规避遮挡问题,同时考虑中继和观测站位置存在随机误差,提出了一种闭式算法来确定未知目标位置。该算法分为3个步骤:首先利用校准目标-中继收发器-观测站这一路径的额外信息,修正中继和观测站位置;随后基于未知目标-中继收发器-观测站获取的观测信息,通过引入额外变量的方式构建伪线性方程,利用加权最小二乘技术给出目标位置粗略估计;最后进一步挖掘目标位置与额外变量的非线性关系,再次构建矩阵方程并给出目标位置最终估计解。经过理论剖析与仿真验证,所提出的算法在可接受的测量误差和观测站点位置误差范围内,能够逼近克拉美罗下界(Cramer-Rao Lower Bound,CRLB)。展开更多
针对目前敌我识别辐射源个体识别(Specific Emitter Identification of Identification Friend or Foe,SEI-IFF)研究不足的问题,提出了一种基于多维特征与Transformer网络的SEI-IFF方法。该方法首先从单个脉冲及信号全局等多维度获取如...针对目前敌我识别辐射源个体识别(Specific Emitter Identification of Identification Friend or Foe,SEI-IFF)研究不足的问题,提出了一种基于多维特征与Transformer网络的SEI-IFF方法。该方法首先从单个脉冲及信号全局等多维度获取如相位、幅度、时间、功率谱密度等信号特征,结合Transformer网络进一步提取不同IFF辐射源个体特征中如前后关联特性的细微特征并最终实现SEI-IFF。试验结果表明,所提方法针对20个目标搭载的IFF辐射源个体的平均识别正确率达95.3%,可较准确地完成SEI-IFF,有助于提升战场SEI-IFF效率。展开更多
瞬时测频(Instantaneous Frequency Measuring, IFM)接收机因其良好的测频性能已成为国内外雷达侦察系统广泛应用的测频接收机。现有的IFM接收机理论是建立在窄带单频信号通过IFM接收机的基础上,当前关于IFM接收机在多路宽带复杂信号环...瞬时测频(Instantaneous Frequency Measuring, IFM)接收机因其良好的测频性能已成为国内外雷达侦察系统广泛应用的测频接收机。现有的IFM接收机理论是建立在窄带单频信号通过IFM接收机的基础上,当前关于IFM接收机在多路宽带复杂信号环境下独立的测频性能方面缺少研究。首先,从理论上推导了多路宽带复杂信号环境下的IFM接收机的输出,指出IFM接收机对单路宽带信号的测频精度较高,而在多路宽带复杂信号环境下IFM接收机测频结果会受到较大影响,因此,IFM接收机无法适应多路宽带复杂信号环境。展开更多
文摘现有无源定位闭式算法均考虑视距(Line of Sight,LOS)环境,无法直接应用于存在遮挡的城市环境低空无人机目标定位等场景,同时,非视距(Non-Line of Sight,NLOS)优化定位算法计算效率较低。针对这些问题,本文开展中继辅助下的单站目标定位研究,通过引入中继收发器对目标信号进行转发,构造两条路径从而规避遮挡问题,同时考虑中继和观测站位置存在随机误差,提出了一种闭式算法来确定未知目标位置。该算法分为3个步骤:首先利用校准目标-中继收发器-观测站这一路径的额外信息,修正中继和观测站位置;随后基于未知目标-中继收发器-观测站获取的观测信息,通过引入额外变量的方式构建伪线性方程,利用加权最小二乘技术给出目标位置粗略估计;最后进一步挖掘目标位置与额外变量的非线性关系,再次构建矩阵方程并给出目标位置最终估计解。经过理论剖析与仿真验证,所提出的算法在可接受的测量误差和观测站点位置误差范围内,能够逼近克拉美罗下界(Cramer-Rao Lower Bound,CRLB)。
文摘针对目前敌我识别辐射源个体识别(Specific Emitter Identification of Identification Friend or Foe,SEI-IFF)研究不足的问题,提出了一种基于多维特征与Transformer网络的SEI-IFF方法。该方法首先从单个脉冲及信号全局等多维度获取如相位、幅度、时间、功率谱密度等信号特征,结合Transformer网络进一步提取不同IFF辐射源个体特征中如前后关联特性的细微特征并最终实现SEI-IFF。试验结果表明,所提方法针对20个目标搭载的IFF辐射源个体的平均识别正确率达95.3%,可较准确地完成SEI-IFF,有助于提升战场SEI-IFF效率。
文摘瞬时测频(Instantaneous Frequency Measuring, IFM)接收机因其良好的测频性能已成为国内外雷达侦察系统广泛应用的测频接收机。现有的IFM接收机理论是建立在窄带单频信号通过IFM接收机的基础上,当前关于IFM接收机在多路宽带复杂信号环境下独立的测频性能方面缺少研究。首先,从理论上推导了多路宽带复杂信号环境下的IFM接收机的输出,指出IFM接收机对单路宽带信号的测频精度较高,而在多路宽带复杂信号环境下IFM接收机测频结果会受到较大影响,因此,IFM接收机无法适应多路宽带复杂信号环境。