β-Ga_(2)O_(3)是一种具有超宽带隙、高临界击穿场强和优异的巴利加优值的半导体材料,近年来在电力电子与深紫外光电探测等领域展现出巨大的应用潜力。金属有机化学气相沉积(Metal-organic chemical vapor deposition,MOCVD)技术凭借其...β-Ga_(2)O_(3)是一种具有超宽带隙、高临界击穿场强和优异的巴利加优值的半导体材料,近年来在电力电子与深紫外光电探测等领域展现出巨大的应用潜力。金属有机化学气相沉积(Metal-organic chemical vapor deposition,MOCVD)技术凭借其高生长速率、精确的膜厚控制、优异的薄膜质量和大尺寸生长等优势,成为未来β-Ga_(2)O_(3)走向产业化的潜在方法,并已被广泛应用于β-Ga_(2)O_(3)的外延生长研究。本文对几种常见晶向的β-Ga_(2)O_(3) MOCVD同质外延生长的研究成果进行了概述,并在此基础上介绍了极具潜力的β-(Al_(x)Ga_(1-x))_(2)O_(3)的MOCVD外延生长研究现状。最后,总结了基于MOCVD技术的β-Ga_(2)O_(3)同质外延生长以及β-(Al_(x)Ga_(1-x))_(2)O_(3)生长过程中面临的主要问题,并对未来的发展进行了展望。展开更多
本文报道了1280×1024元InAs/GaSb II类超晶格中/中波双色红外焦平面阵列探测器的研究结果。探测器采用PN-NP叠层双色外延结构,信号提取采用叠层双色结构和顺序读出方式。运用分子束外延技术在GaSb衬底上生长超晶格材料,双波段红外...本文报道了1280×1024元InAs/GaSb II类超晶格中/中波双色红外焦平面阵列探测器的研究结果。探测器采用PN-NP叠层双色外延结构,信号提取采用叠层双色结构和顺序读出方式。运用分子束外延技术在GaSb衬底上生长超晶格材料,双波段红外吸收区的超晶格周期结构分别为中波1:6 ML InAs/7 ML GaSb和中波2:9 ML InAs/7 ML GaSb。焦平面阵列像元中心距为12μm。在80 K时测试,器件双波段的工作谱段为中波1:3~4μm,中波2:3.8~5.2μm。中波1器件平均峰值探测率达到6.32×10^(11) cm·Hz^(1/2)W^(-1),中波2器件平均峰值探测率达到2.84×10^(11) cm·Hz^(1/2)W^(-1)。红外焦平面偏压调节成像测试得到清晰的双波段成像。本文是国内首次报道1280×1024规模InAs/GaSb II类超晶格中/中波双色红外焦平面探测器。展开更多
文摘β-Ga_(2)O_(3)是一种具有超宽带隙、高临界击穿场强和优异的巴利加优值的半导体材料,近年来在电力电子与深紫外光电探测等领域展现出巨大的应用潜力。金属有机化学气相沉积(Metal-organic chemical vapor deposition,MOCVD)技术凭借其高生长速率、精确的膜厚控制、优异的薄膜质量和大尺寸生长等优势,成为未来β-Ga_(2)O_(3)走向产业化的潜在方法,并已被广泛应用于β-Ga_(2)O_(3)的外延生长研究。本文对几种常见晶向的β-Ga_(2)O_(3) MOCVD同质外延生长的研究成果进行了概述,并在此基础上介绍了极具潜力的β-(Al_(x)Ga_(1-x))_(2)O_(3)的MOCVD外延生长研究现状。最后,总结了基于MOCVD技术的β-Ga_(2)O_(3)同质外延生长以及β-(Al_(x)Ga_(1-x))_(2)O_(3)生长过程中面临的主要问题,并对未来的发展进行了展望。
文摘本文报道了1280×1024元InAs/GaSb II类超晶格中/中波双色红外焦平面阵列探测器的研究结果。探测器采用PN-NP叠层双色外延结构,信号提取采用叠层双色结构和顺序读出方式。运用分子束外延技术在GaSb衬底上生长超晶格材料,双波段红外吸收区的超晶格周期结构分别为中波1:6 ML InAs/7 ML GaSb和中波2:9 ML InAs/7 ML GaSb。焦平面阵列像元中心距为12μm。在80 K时测试,器件双波段的工作谱段为中波1:3~4μm,中波2:3.8~5.2μm。中波1器件平均峰值探测率达到6.32×10^(11) cm·Hz^(1/2)W^(-1),中波2器件平均峰值探测率达到2.84×10^(11) cm·Hz^(1/2)W^(-1)。红外焦平面偏压调节成像测试得到清晰的双波段成像。本文是国内首次报道1280×1024规模InAs/GaSb II类超晶格中/中波双色红外焦平面探测器。