[Objective] The aim was to investigate the effects of sound wave on propagation of Chlorella pyrenoidosa to explore the optimal frequency for Chlorella pyrenoidosa.[Method] In the research,Chlorella pyrenoidosa was cu...[Objective] The aim was to investigate the effects of sound wave on propagation of Chlorella pyrenoidosa to explore the optimal frequency for Chlorella pyrenoidosa.[Method] In the research,Chlorella pyrenoidosa was cultured for 7 d with sound waves at different frequencies and a control group was set to study effects of sound wave at different frequencies on growth of Chlorella pyrenoidosa.[Result] Growth of Chlorella pyrenoidosa was significantly improved by sound wave,especially for wave at 400 Hz.[Conclusion] Chlorella pyrenoidosa propagation would be promoted by sound wave at certain frequencies.展开更多
[Objective] This study aimed to gain better understanding of the effects of salt stress on photosynthesis of Spirulina platensis. [Method] A salt stress simulation experiment was carried out, in which Spirulina platen...[Objective] This study aimed to gain better understanding of the effects of salt stress on photosynthesis of Spirulina platensis. [Method] A salt stress simulation experiment was carried out, in which Spirulina platensis cells were incubated with different salt concentrations (0, 0.1, 0.3, 0.5, 0.8, and 1.0 mol/L of NaCI). Subsequently, some photosynthesis-related parameters were determined after incubated at various NaCI concentrations for 24 h. [Result] Under our experimental conditions, chlorophyll, carotenoid, phycocyanin and allophycocyanin contents, and photosynthesis rate decreased with the increasing NaCI concentrations. Above the 0.5 mol/L Na- CI level, the detrimental effect of salt stress became more severe. [Conclusion] From the results obtained in this investigation, we can conclude that the decrease in chlorophyll, carotenoid, phycocyanin and allophycocyanin contents may be the most important reason causing the decline in photosynthsis rate which strongly affects the biomass yield of Spirulina platensis in outdoor cultivation展开更多
[Objective] This study aimed to seek the cultivation method for Spirulina with seawater. [Method] Spirulina was habituated culture progressively with prepared seawater acclimation solution. The morphological changes o...[Objective] This study aimed to seek the cultivation method for Spirulina with seawater. [Method] Spirulina was habituated culture progressively with prepared seawater acclimation solution. The morphological changes of Spirulina were observed and its biochemical indicators were measured. [Result] A new algae species was obtained, which had better stability and greater average length than Spirulina in fresh water. Compared with the Spirulina in fresh water, the new algae species showed no significant change in chlorophyll content, but a 62.8% increase in the concentration of phycocyanin. [Conclusion] The method could save resources and cost, which lays the foundation for large scale production and processing of Spirulina.展开更多
Attached cultivation is a promising method for microalgal biomass production. Filamentous oleaginous microalga Tribonema minus(hereafter T. minus) has shown a remarkable potential for biofuel production in terms of it...Attached cultivation is a promising method for microalgal biomass production. Filamentous oleaginous microalga Tribonema minus(hereafter T. minus) has shown a remarkable potential for biofuel production in terms of its high lipid content. However, the strain has only been cultivated in suspended cultivation systems including open pond and closed photobioreactors. Here, we attempted to study the attached cultivation of T. minus, which might be helpful for its scale-up cultivation and industrial applications. As the results, the optimal conditions for T. minus growth in the attached biofilm are 200 μmol photons m^-2 s^-1 of light intensity and 5% of CO2, and the maximum biomass density of 223 g m^-2 has been achieved under the light intensity. The non-woven fabric as substratum was found as the best substratum in thin layer attached bioreactor, on which the average biomass productivity of T. minus is about(9.73 ± 2.19) g m^-2)d^-1. Furthermore, two attached bioreactor systems, rotary drum and rotation disc, were designed following the light dilution strategy and introduced into T. minus cultivation. The highest footprint areal biomass productivity of these two systems is 33 and 47.1 g m^-2 d^-1, respectively, much higher than that in suspended cultivation system. The results shows that T. minus can be cultured with attached cultivation method to improve its biomass productivity.展开更多
The growth, biochemical content and bioaccumulation quantity of 2,2',4,4'-tetrabromodiphenyl ether(BDE-47) in Skeletonema costatum were studied under different N:P ratios(1, 4, 16, 64 and 128). All cellular bi...The growth, biochemical content and bioaccumulation quantity of 2,2',4,4'-tetrabromodiphenyl ether(BDE-47) in Skeletonema costatum were studied under different N:P ratios(1, 4, 16, 64 and 128). All cellular biochemical contents of S. costatum presented decreasing trend over cultivation time. At early stage of cultivation, the cellular protein, carbohydrate and lipid in S. costatum presented higher values in treatments of N:P=4 and 16. However, they were lower in these treatments at the late stage, but higher in treatments N:P=1 and 128. Similarly, BDE-47 levels per cell of S. costatum were higher in treatments of N:P=4 and 16 at early stage of cultivation, which were 3.8 and 3.7 ng(106 cells)-1, respectively. At the middle stage of cultivation, the BDE-47 level per S. costatum cell lowered; and it further reduced in the treatments of N:P=4 and 16 at the late stage with the values 0.6 and 0.5 ng(106 cells)-1, respectively. However, it rose in N:P=128, reaching up to 2.3 ng(106 cells)-1. Compared with BDE-47 per cell, BDE-47 per algal volume under different N:P ratios did not present obvious difference. The quantity BDE-47 accumulated per cell of S. costatum was positively correlated with protein, carbohydrate and lipid per cell; meanwhile, the BDE-47 per volume had a positive correlation with biochemical content per volume. The variation of bioaccumulation ability of BDE-47 in S. costatum can be explained by biochemical changes due to N:P ratios.展开更多
基金Supported by Zhejiang Major Science and Technology Program(2008C12056)Zhejiang Science Innovation Plan for Undergraduate(2011R415023)~~
文摘[Objective] The aim was to investigate the effects of sound wave on propagation of Chlorella pyrenoidosa to explore the optimal frequency for Chlorella pyrenoidosa.[Method] In the research,Chlorella pyrenoidosa was cultured for 7 d with sound waves at different frequencies and a control group was set to study effects of sound wave at different frequencies on growth of Chlorella pyrenoidosa.[Result] Growth of Chlorella pyrenoidosa was significantly improved by sound wave,especially for wave at 400 Hz.[Conclusion] Chlorella pyrenoidosa propagation would be promoted by sound wave at certain frequencies.
基金Supported by Project of Applied Basic Research from Sichuan Provincial Department of Science and Technology(2009JY0144)~~
文摘[Objective] This study aimed to gain better understanding of the effects of salt stress on photosynthesis of Spirulina platensis. [Method] A salt stress simulation experiment was carried out, in which Spirulina platensis cells were incubated with different salt concentrations (0, 0.1, 0.3, 0.5, 0.8, and 1.0 mol/L of NaCI). Subsequently, some photosynthesis-related parameters were determined after incubated at various NaCI concentrations for 24 h. [Result] Under our experimental conditions, chlorophyll, carotenoid, phycocyanin and allophycocyanin contents, and photosynthesis rate decreased with the increasing NaCI concentrations. Above the 0.5 mol/L Na- CI level, the detrimental effect of salt stress became more severe. [Conclusion] From the results obtained in this investigation, we can conclude that the decrease in chlorophyll, carotenoid, phycocyanin and allophycocyanin contents may be the most important reason causing the decline in photosynthsis rate which strongly affects the biomass yield of Spirulina platensis in outdoor cultivation
文摘[Objective] This study aimed to seek the cultivation method for Spirulina with seawater. [Method] Spirulina was habituated culture progressively with prepared seawater acclimation solution. The morphological changes of Spirulina were observed and its biochemical indicators were measured. [Result] A new algae species was obtained, which had better stability and greater average length than Spirulina in fresh water. Compared with the Spirulina in fresh water, the new algae species showed no significant change in chlorophyll content, but a 62.8% increase in the concentration of phycocyanin. [Conclusion] The method could save resources and cost, which lays the foundation for large scale production and processing of Spirulina.
基金supported by the Strategic Priority Research Program of Chinese Academy of Sciences (Transformational Technologies for Clean Energy and Demonstration)(No.XDA21010211)the Shandong Provincial Natural Science Foundation (No.ZR2017QC007)the Youth Innovation Promotion Association, CAS。
文摘Attached cultivation is a promising method for microalgal biomass production. Filamentous oleaginous microalga Tribonema minus(hereafter T. minus) has shown a remarkable potential for biofuel production in terms of its high lipid content. However, the strain has only been cultivated in suspended cultivation systems including open pond and closed photobioreactors. Here, we attempted to study the attached cultivation of T. minus, which might be helpful for its scale-up cultivation and industrial applications. As the results, the optimal conditions for T. minus growth in the attached biofilm are 200 μmol photons m^-2 s^-1 of light intensity and 5% of CO2, and the maximum biomass density of 223 g m^-2 has been achieved under the light intensity. The non-woven fabric as substratum was found as the best substratum in thin layer attached bioreactor, on which the average biomass productivity of T. minus is about(9.73 ± 2.19) g m^-2)d^-1. Furthermore, two attached bioreactor systems, rotary drum and rotation disc, were designed following the light dilution strategy and introduced into T. minus cultivation. The highest footprint areal biomass productivity of these two systems is 33 and 47.1 g m^-2 d^-1, respectively, much higher than that in suspended cultivation system. The results shows that T. minus can be cultured with attached cultivation method to improve its biomass productivity.
基金supported by the National Natural Science Foundation of China (No. 40906061)the Science and Technology Plan Projects of Qingdao (No. 12-1-364-nsh)+1 种基金the ‘Two Districts’ Foundation of Shandong Province, China (No. 2011-Yellow-19)the Talent Foundation of Qingdao Agricultural University (No. 630642)
文摘The growth, biochemical content and bioaccumulation quantity of 2,2',4,4'-tetrabromodiphenyl ether(BDE-47) in Skeletonema costatum were studied under different N:P ratios(1, 4, 16, 64 and 128). All cellular biochemical contents of S. costatum presented decreasing trend over cultivation time. At early stage of cultivation, the cellular protein, carbohydrate and lipid in S. costatum presented higher values in treatments of N:P=4 and 16. However, they were lower in these treatments at the late stage, but higher in treatments N:P=1 and 128. Similarly, BDE-47 levels per cell of S. costatum were higher in treatments of N:P=4 and 16 at early stage of cultivation, which were 3.8 and 3.7 ng(106 cells)-1, respectively. At the middle stage of cultivation, the BDE-47 level per S. costatum cell lowered; and it further reduced in the treatments of N:P=4 and 16 at the late stage with the values 0.6 and 0.5 ng(106 cells)-1, respectively. However, it rose in N:P=128, reaching up to 2.3 ng(106 cells)-1. Compared with BDE-47 per cell, BDE-47 per algal volume under different N:P ratios did not present obvious difference. The quantity BDE-47 accumulated per cell of S. costatum was positively correlated with protein, carbohydrate and lipid per cell; meanwhile, the BDE-47 per volume had a positive correlation with biochemical content per volume. The variation of bioaccumulation ability of BDE-47 in S. costatum can be explained by biochemical changes due to N:P ratios.