The Tianma 65 m radio telescope(TMRT)at Shanghai is a fully steerable single-dish radio telescope in China,operating at centimeter to millimeter wavelengths(1.25 GHz to 50 GHz).This paper presents details on the main ...The Tianma 65 m radio telescope(TMRT)at Shanghai is a fully steerable single-dish radio telescope in China,operating at centimeter to millimeter wavelengths(1.25 GHz to 50 GHz).This paper presents details on the main specifications,design,performance analysis,testing,and construction of the telescope antenna.The measured total efficiency is better than 50%over the whole elevation angle range,first sidelobe levels are less than−20 dB,antenna system noise temperatures are less than 70 K at 30°elevation angle,and pointing accuracy is less than 3″.The measured and calculated results are in good agreement,verifying the effectiveness of the design and analysis.展开更多
【应用背景】快速射电暴(Fast Radio Burst,FRB)搜寻是500米口径球面射电望远镜(FAST)的重要科学目标之一,其计算复杂度高,数据量大,当前算法GPU利用率偏低,数据处理需较多的人工介入操作。【目的】在不修改算法实现的前提下,实现进程级...【应用背景】快速射电暴(Fast Radio Burst,FRB)搜寻是500米口径球面射电望远镜(FAST)的重要科学目标之一,其计算复杂度高,数据量大,当前算法GPU利用率偏低,数据处理需较多的人工介入操作。【目的】在不修改算法实现的前提下,实现进程级GPU并行优化,提高GPU整体资源利用率,简化算法运行调度,支持利用自动化脚本驱动计算过程。【方法】利用容器化封装FRB搜寻算法,结合GPU聚合技术实现多个FRB搜寻计算容器的多进程并行,支持GPU闲时复用。通过容器化封装屏蔽了GPU调用、依赖库管理等技术细节,减少人工介入操作。【结果】算法实验结果表明,在不修改原始算法、不增加GPU资源的前提下,将单GPU绑定6个计算进程,并行优化可实现FRB搜寻算法的加速比达到5.3,并行效率达到0.88,取得良好的并行效果。【结论】基于容器化封装及进程级GPU聚合的并行优化,可实现GPU利用率及计算效率的提升,有效支持自动化处理。该方法还具有良好的通用性,可适用于类似应用的并行优化。展开更多
We report a new high-sensitivity HⅠmapping observation of the NGC 5055 galaxy group over an area of 1°.5×0°.75 with the Five-hundred-meter Aperture Spherical radio Telescope(FAST).Our observation revea...We report a new high-sensitivity HⅠmapping observation of the NGC 5055 galaxy group over an area of 1°.5×0°.75 with the Five-hundred-meter Aperture Spherical radio Telescope(FAST).Our observation reveals that the warped HⅠdisk of NGC 5055 is more extended than what was previously observed by WSRT,out to239(61.7 kpc).The total HⅠmass of NGC 5055 is determined to be~1.1×10^(10)M_Θ.We identified three HⅠclouds with HⅠmasses of the order of~10^(7)M_Θat the southeastern edge of the HⅠdisk,as well as a candidate high-velocity cloud with an HⅠmass of(1.2±0.5)×10^(6)M_Θto the north of NGC 5055.The HⅠcontent of UGCA337 is robustly detected for the first time by the FAST observations.It has a narrow HⅠlinewidth of W_(50)=17.4±3.8 km s^(-1)with a total HⅠmass of(3.5±0.3)×10^(6)M_Θ.Comparing the gas content and g-r color of UGCA 337 with typical low-mass dwarf galaxies,UGCA 337 appears relatively gas-poor despite its blue color.This suggests that UGCA 337 may have undergone gas stripping in the past.We also analyzed the possible origin of the diffuse HⅠclouds located at the outskirts of NGC 5055,and speculate that they might be the remnant features of a merger event in the past.展开更多
Accurate flux density calibration is essential for precise analysis and interpretation of observations across different observation modes and instruments.In this research,we first introduce the flux calibration model ...Accurate flux density calibration is essential for precise analysis and interpretation of observations across different observation modes and instruments.In this research,we first introduce the flux calibration model that incorporated in Hi FAST pipeline,and designed for processing HⅠ21 cm spectra.Furthermore,we investigate different calibration techniques and assess the dependence of the gain parameter on the time and environmental factors.A comparison is carried out in various observation modes(e.g.,tracking and scanning modes)to determine the flux density gain(G),revealing insignificant discrepancies in G among different methods.Long-term monitoring data shows a linear correlation between G and atmospheric temperature.After subtracting the G-Temperature dependence,the dispersion of G is reduced to<3%over a one-year timescale.The stability of the receiver response of Five-hundred-meter Aperture Spherical radio Telescope(FAST)is considered sufficient to facilitate HⅠobservations that can accommodate a moderate error in flux calibration(e.g.,>~5%)when utilizing a constant G for calibration purposes.Our study will serve as a useful addition to the results provided by Jiang et al.Detailed measurement of G for the 19 beams of FAST,covering the frequency range 1000-1500 MHz,can be found on the Hi FAST homepage:https://hifast.readthedocs.io/fluxgain.展开更多
In this paper,an effective active vibration control method was investigated to further improve the positioning accuracy of the Five-hundred-meter Aperture Spherical radio Telescope(FAST)feed cabin.The actual operation...In this paper,an effective active vibration control method was investigated to further improve the positioning accuracy of the Five-hundred-meter Aperture Spherical radio Telescope(FAST)feed cabin.The actual operation data of FAST was collected to analyze the vibration characteristics of the feed cabin in multiple directions.A simplified model of the cabin-cable system was established to evaluate the effects of a mass damper on different vibration frequencies and modes.On this basis,an active mass damper system and control system were designed for the cabin with multiple degrees of freedom and modal variation characteristics.Theoretical calculation and simulation proved that it has a significant effect on improving the damping of the cabin-cable system and suppressing the vibration of the FAST feed cabin.展开更多
In this paper,the emissions from two pulsars,PSRs J1611-0114 and J1617+1123,were investigated using th Five-hundred-meter Aperture Spherical radio Telescope operating at a central frequency of 1250 MHz.Th average puls...In this paper,the emissions from two pulsars,PSRs J1611-0114 and J1617+1123,were investigated using th Five-hundred-meter Aperture Spherical radio Telescope operating at a central frequency of 1250 MHz.Th average pulse profile of PSR J1611-0114 shows two components,the first of which is relatively weak in intensity The two-dimensional pulse stack exhibits an obvious nulling phenomenon,with an estimated nulling fraction o40.1%±5.4%.The durations of the nulls and bursts are consistent with power-law distributions,and no periodi nulling phenomenon is found.The results from PSR J1617+1123 demonstrate that the average pulse profile i composed of four components.The peak intensity of the fourth component varies significantly,causing an unstabl integrated profile.In addition,the modulation characteristics of J1611-0114 and J1617+1123 were studied by analyzing the modulation index,longitude resolved fluctuation spectrum and two-dimensional fluctuation spectrum using the software PSRSALSA.It was found that the two pulsars exhibit intensity modulation.In particular,J1611-0114 displays even-odd modulation,with the modulation period of approximately two pulses.The modulation period of J1617+1123 is relatively broad.There is an obvious subpulse drift phenomenon,and the value of P_(2)i~0.125c/P_(0),corresponding to 12 pulse longitude bins,and the drift rate(P_(2)/P_(3))is about 0.29.展开更多
We used the Five-hundred-meter Aperture Spherical radio Telescope(FAST)to search for the molecular emissions in the L-band between 1.0 and 1.5 GHz toward four comets,C/2020 F3(NEOWISE),C/2020 R4(ATLAS),C/2021 A1(Leona...We used the Five-hundred-meter Aperture Spherical radio Telescope(FAST)to search for the molecular emissions in the L-band between 1.0 and 1.5 GHz toward four comets,C/2020 F3(NEOWISE),C/2020 R4(ATLAS),C/2021 A1(Leonard),and 67P/Churyumov-Gerasimenko during or after their perihelion passages.Thousands of molecular transition lines fall in this low-frequency range,many attributed to complex organic or prebiotic molecules.We conducted a blind search for the possible molecular lines in this frequency range in those comets and could not identify clear signals of molecular emissions in the data.Although several molecules have been detected at high frequencies of greater than100 GHz in comets,our results confirm that it is challenging to detect molecular transitions in the L-band frequency ranges.The non-detection of L-band molecular lines in the cometary environment could rule out the possibility of unusually strong lines,which could be caused by the masers or non-LTE effects.Although the line strengths are predicted to be weak,for FAST,using the ultra-wide bandwidth receiver and improving the radio frequency interference environments would enhance the detectability of those molecular transitions at low frequencies in the future.展开更多
Fast radio bursts(FRBs)are among the most studied radio transients in astrophysics,but their origin and radiation mechanism are still unknown.It is a challenge to search for FRB events in a huge amount of observationa...Fast radio bursts(FRBs)are among the most studied radio transients in astrophysics,but their origin and radiation mechanism are still unknown.It is a challenge to search for FRB events in a huge amount of observational data with high speed and high accuracy.With the rapid advancement of the FRB research process,FRB searching has changed from archive data mining to either long-term monitoring of the repeating FRBs or all-sky surveys with specialized equipments.Therefore,establishing a highly efficient and high quality FRB search pipeline is the primary task in FRB research.Deep learning techniques provide new ideas for FRB search processing.We have detected radio bursts from FRB 20201124A in the L-band observational data of the Nanshan 26 m radio telescope(NSRT-26m)using the constructed deep learning based search pipeline named dispersed dynamic spectra search(DDSS).Afterwards,we further retrained the deep learning model and applied the DDSS framework to S-band observations.In this paper,we present the FRB observation system and search pipeline using the S-band receiver.We carried out search experiments,and successfully detected the radio bursts from the magnetar SGR J1935+2145and FRB 20220912A.The experimental results show that the search pipeline can complete the search efficiently and output the search results with high accuracy.展开更多
Molecular oxygen abundance is a key parameter in understanding the chemical network of the interstellar medium.We estimate the molecular oxygen column density and abundance for a sample of Galactic massive star format...Molecular oxygen abundance is a key parameter in understanding the chemical network of the interstellar medium.We estimate the molecular oxygen column density and abundance for a sample of Galactic massive star formation regions based on observations from the Submillimiter Wave Astronomy Satellite(SWAS)survey.We obtained an averaged O_(2)spectrum based on this sample using the(SWAS)survey data(O_(2),487.249 GHz,N=3-1,J=3-2).No emission or absorption feature is seen around the supposed central velocity with a total integration time of t_(total)=8.67×10^(3)hr and an rms noise per channel of 1.45 m K.Assuming a kinetic temperature T_(kin)=30 K,we derive the 3σupper limit of the O_(2)column density to be 3.3×10^(15)cm^(-2),close to the lowest values reported in Galactic massive star formation regions in previous studies.The corresponding O_(2)abundance upper limit is6.7×10^(-8),lower than all previous results based on SWAS observations and is close to the lowest reported value in massive star formation regions.On a galactic scale,our statistical results confirm a generally low O_(2)abundance for Galactic massive star formation regions.This abundance is also lower than results reported in extragalactic sources.展开更多
Pulsar search is always the basis of pulsar navigation,gravitational wave detection and other research topics.Currently,the volume of pulsar candidates collected by the Five-hundred-meter Aperture Spherical radio Tele...Pulsar search is always the basis of pulsar navigation,gravitational wave detection and other research topics.Currently,the volume of pulsar candidates collected by the Five-hundred-meter Aperture Spherical radio Telescope(FAST)shows an explosive growth rate that has brought challenges for its pulsar candidate filtering system.Particularly,the multi-view heterogeneous data and class imbalance between true pulsars and non-pulsar candidates have negative effects on traditional single-modal supervised classification methods.In this study,a multi-modal and semi-supervised learning based on a pulsar candidate sifting algorithm is presented,which adopts a hybrid ensemble clustering scheme of density-based and partition-based methods combined with a feature-level fusion strategy for input data and a data partition strategy for parallelization.Experiments on both High Time Resolution Universe SurveyⅡ(HTRU2)and actual FAST observation data demonstrate that the proposed algorithm could excellently identify pulsars:On HTRU2,the precision and recall rates of its parallel mode reach0.981 and 0.988 respectively.On FAST data,those of its parallel mode reach 0.891 and 0.961,meanwhile,the running time also significantly decreases with the increment of parallel nodes within limits.Thus,we can conclude that our algorithm could be a feasible idea for large scale pulsar candidate sifting for FAST drift scan observation.展开更多
The radio telescope possesses high sensitivity and strong signal collection capabilities.While receiving celestial radiation signals,it also captures Radio Frequency Interferences(RFIs)introduced by human activities.R...The radio telescope possesses high sensitivity and strong signal collection capabilities.While receiving celestial radiation signals,it also captures Radio Frequency Interferences(RFIs)introduced by human activities.RFI,as signals originating from sources other than the astronomical targets,significantly impacts the quality of astronomical data.This paper presents an RFI fast mitigation algorithm based on block Least Mean Square(LMS)algorithm.It enhances the traditional adaptive LMS filter by grouping L adjacent time-sampled points into one block and applying the same filter coefficients for filtering within each block.This transformation reduces multiplication calculations and enhances algorithm efficiency by leveraging the time-domain convolution theorem.The algorithm is tested using baseband data from the Parkes 64 m radio telescope's pulsar observations and simulated data.The results confirm the algorithm's effectiveness,as the pulsar profile after RFI mitigation closely matches the original pulsar profile.展开更多
Active reflectors are often used to compensate the surface distortion caused by environmental factors that degrade the electromagnetic performance of large high-frequency reflector antennas.This is crucial for maintai...Active reflectors are often used to compensate the surface distortion caused by environmental factors that degrade the electromagnetic performance of large high-frequency reflector antennas.This is crucial for maintaining high gain operation in antennas.A distortion compensation method for the active reflector of a large dual-reflector antenna is proposed.A relationship is established between the surface deformation and the optical path difference for the primary reflector by geometric optics.Subsequently,employing finite element analysis,a polynomial fitting approach is used to describe the impact of adjusting points on the reflector surface based on the coordinates of each node.By standardizing the positions of various panels on the reflector,the fitting ns can be applied to the reflector panels of similar shapes.Then,based on the distribution characteristics of the primary reflector panels,the adjustment equation for the actuators is derived by the influence matrix method.It can be used to determine the adjustment amount of actuators to reduce the rms of the optical path difference.And,the least squares method is employed to resolve the matrix equation.The example of a 110 m aperture dual-reflector antenna is carried out by finite element analysis and the proposed method.The results show that the optical path difference is reduced significantly at various elevation cases,which indicates that the proposed method is effective.展开更多
文摘The Tianma 65 m radio telescope(TMRT)at Shanghai is a fully steerable single-dish radio telescope in China,operating at centimeter to millimeter wavelengths(1.25 GHz to 50 GHz).This paper presents details on the main specifications,design,performance analysis,testing,and construction of the telescope antenna.The measured total efficiency is better than 50%over the whole elevation angle range,first sidelobe levels are less than−20 dB,antenna system noise temperatures are less than 70 K at 30°elevation angle,and pointing accuracy is less than 3″.The measured and calculated results are in good agreement,verifying the effectiveness of the design and analysis.
文摘【应用背景】快速射电暴(Fast Radio Burst,FRB)搜寻是500米口径球面射电望远镜(FAST)的重要科学目标之一,其计算复杂度高,数据量大,当前算法GPU利用率偏低,数据处理需较多的人工介入操作。【目的】在不修改算法实现的前提下,实现进程级GPU并行优化,提高GPU整体资源利用率,简化算法运行调度,支持利用自动化脚本驱动计算过程。【方法】利用容器化封装FRB搜寻算法,结合GPU聚合技术实现多个FRB搜寻计算容器的多进程并行,支持GPU闲时复用。通过容器化封装屏蔽了GPU调用、依赖库管理等技术细节,减少人工介入操作。【结果】算法实验结果表明,在不修改原始算法、不增加GPU资源的前提下,将单GPU绑定6个计算进程,并行优化可实现FRB搜寻算法的加速比达到5.3,并行效率达到0.88,取得良好的并行效果。【结论】基于容器化封装及进程级GPU聚合的并行优化,可实现GPU利用率及计算效率的提升,有效支持自动化处理。该方法还具有良好的通用性,可适用于类似应用的并行优化。
基金supported by the National Key R&D Program of China(2022YFA1602901)the National Natural Science Foundation of China(NSFC,grant No.12373001)supported by the Open Project Program of the Key Laboratory of FAST,NAOC,Chinese Academy of Sciences。
文摘We report a new high-sensitivity HⅠmapping observation of the NGC 5055 galaxy group over an area of 1°.5×0°.75 with the Five-hundred-meter Aperture Spherical radio Telescope(FAST).Our observation reveals that the warped HⅠdisk of NGC 5055 is more extended than what was previously observed by WSRT,out to239(61.7 kpc).The total HⅠmass of NGC 5055 is determined to be~1.1×10^(10)M_Θ.We identified three HⅠclouds with HⅠmasses of the order of~10^(7)M_Θat the southeastern edge of the HⅠdisk,as well as a candidate high-velocity cloud with an HⅠmass of(1.2±0.5)×10^(6)M_Θto the north of NGC 5055.The HⅠcontent of UGCA337 is robustly detected for the first time by the FAST observations.It has a narrow HⅠlinewidth of W_(50)=17.4±3.8 km s^(-1)with a total HⅠmass of(3.5±0.3)×10^(6)M_Θ.Comparing the gas content and g-r color of UGCA 337 with typical low-mass dwarf galaxies,UGCA 337 appears relatively gas-poor despite its blue color.This suggests that UGCA 337 may have undergone gas stripping in the past.We also analyzed the possible origin of the diffuse HⅠclouds located at the outskirts of NGC 5055,and speculate that they might be the remnant features of a merger event in the past.
基金the support of the China National Key Program for Science and Technology Research and Development of China(2022YFA1602901,2023YFA1608204)the National Natural Science Foundation of China(Nos.11988101,11873051,12125302,12373011,12041305,12173016)the CAS Project for Young Scientists in Basic Research grant(No.YSBR-062)。
文摘Accurate flux density calibration is essential for precise analysis and interpretation of observations across different observation modes and instruments.In this research,we first introduce the flux calibration model that incorporated in Hi FAST pipeline,and designed for processing HⅠ21 cm spectra.Furthermore,we investigate different calibration techniques and assess the dependence of the gain parameter on the time and environmental factors.A comparison is carried out in various observation modes(e.g.,tracking and scanning modes)to determine the flux density gain(G),revealing insignificant discrepancies in G among different methods.Long-term monitoring data shows a linear correlation between G and atmospheric temperature.After subtracting the G-Temperature dependence,the dispersion of G is reduced to<3%over a one-year timescale.The stability of the receiver response of Five-hundred-meter Aperture Spherical radio Telescope(FAST)is considered sufficient to facilitate HⅠobservations that can accommodate a moderate error in flux calibration(e.g.,>~5%)when utilizing a constant G for calibration purposes.Our study will serve as a useful addition to the results provided by Jiang et al.Detailed measurement of G for the 19 beams of FAST,covering the frequency range 1000-1500 MHz,can be found on the Hi FAST homepage:https://hifast.readthedocs.io/fluxgain.
文摘In this paper,an effective active vibration control method was investigated to further improve the positioning accuracy of the Five-hundred-meter Aperture Spherical radio Telescope(FAST)feed cabin.The actual operation data of FAST was collected to analyze the vibration characteristics of the feed cabin in multiple directions.A simplified model of the cabin-cable system was established to evaluate the effects of a mass damper on different vibration frequencies and modes.On this basis,an active mass damper system and control system were designed for the cabin with multiple degrees of freedom and modal variation characteristics.Theoretical calculation and simulation proved that it has a significant effect on improving the damping of the cabin-cable system and suppressing the vibration of the FAST feed cabin.
基金supported by National Key Research and Development Program of China(2022YFC2205203)the Major Science and Technology Program of Xinjiang Uygur Autonomous Region(No.2022A03013-1)+9 种基金the National Natural Science Foundation of China(NSFC,grant Nos.U1838109 and 12041304)supported by the Major Science and Technology Program of Xinjiang Uygur Autonomous Region(No.2022A03013-1)National Natural Science Foundation of China(NSFC,Grant No.12303053)the 2021 project Xinjiang Uygur autonomous region of China for Tianshan elites,the Youth Innovation Promotion Association of CAS under No.2023069the Tianshan Talent Training Program(No.2023TSYCCX0100)supported by the National SKA Program of China(grant No.2020SKA0120200)the National Natural Science Foundation of China(NSFC,grant Nos.12041303,12273100 and12288102)the National Key R&D Program of China(grant No.2022YFC2205201)the West Light Foundation of the Chinese Academy of Sciences(grant No.WLFC 2021-XBQNXZ-027)the Major Science and Technology Program of Xinjiang Uygur Autonomous Region(grant No.2022A03013-4)。
文摘In this paper,the emissions from two pulsars,PSRs J1611-0114 and J1617+1123,were investigated using th Five-hundred-meter Aperture Spherical radio Telescope operating at a central frequency of 1250 MHz.Th average pulse profile of PSR J1611-0114 shows two components,the first of which is relatively weak in intensity The two-dimensional pulse stack exhibits an obvious nulling phenomenon,with an estimated nulling fraction o40.1%±5.4%.The durations of the nulls and bursts are consistent with power-law distributions,and no periodi nulling phenomenon is found.The results from PSR J1617+1123 demonstrate that the average pulse profile i composed of four components.The peak intensity of the fourth component varies significantly,causing an unstabl integrated profile.In addition,the modulation characteristics of J1611-0114 and J1617+1123 were studied by analyzing the modulation index,longitude resolved fluctuation spectrum and two-dimensional fluctuation spectrum using the software PSRSALSA.It was found that the two pulsars exhibit intensity modulation.In particular,J1611-0114 displays even-odd modulation,with the modulation period of approximately two pulses.The modulation period of J1617+1123 is relatively broad.There is an obvious subpulse drift phenomenon,and the value of P_(2)i~0.125c/P_(0),corresponding to 12 pulse longitude bins,and the drift rate(P_(2)/P_(3))is about 0.29.
基金supported by a grant from the National Natural Science Foundation of China(NSFC)No.11988101by the NSFC grant Nos.11703047,11773041,U2031119,12173052,12173053,12373032,and 11963002+6 种基金support from the China Postdoctoral Science Foundation grant No.2023M733271the Foundation of Education Bureau of Guizhou Province,China(grant No.KY(2020)003)supported by the International Partnership Program of the Chinese Academy of Sciences,program No.114A11KYSB20210010the Youth Innovation Promotion Association of the Chinese Academy of Sciences(ID Nos.2023064,2018075,and Y2022027)the support from the National Key R&D Program of China grant Nos.2022YFC2205202 and 2020SKA0120100supported by the CAS“Light of West China”Programthe support by the NSFC grant No.12373026。
文摘We used the Five-hundred-meter Aperture Spherical radio Telescope(FAST)to search for the molecular emissions in the L-band between 1.0 and 1.5 GHz toward four comets,C/2020 F3(NEOWISE),C/2020 R4(ATLAS),C/2021 A1(Leonard),and 67P/Churyumov-Gerasimenko during or after their perihelion passages.Thousands of molecular transition lines fall in this low-frequency range,many attributed to complex organic or prebiotic molecules.We conducted a blind search for the possible molecular lines in this frequency range in those comets and could not identify clear signals of molecular emissions in the data.Although several molecules have been detected at high frequencies of greater than100 GHz in comets,our results confirm that it is challenging to detect molecular transitions in the L-band frequency ranges.The non-detection of L-band molecular lines in the cometary environment could rule out the possibility of unusually strong lines,which could be caused by the masers or non-LTE effects.Although the line strengths are predicted to be weak,for FAST,using the ultra-wide bandwidth receiver and improving the radio frequency interference environments would enhance the detectability of those molecular transitions at low frequencies in the future.
基金supported by the Chinese Academy of Sciences(CAS)“Light of West China”Program(No.2022-XBQNXZ-015)the National Natural Science Foundation of China(NSFC,grant No.11903071)the Operation,Maintenance and Upgrading Fund for Astronomical Telescopes and Facility Instruments,budgeted from the Ministry of Finance(MOF)of China and administered by the Chinese Academy of Sciences(CAS)。
文摘Fast radio bursts(FRBs)are among the most studied radio transients in astrophysics,but their origin and radiation mechanism are still unknown.It is a challenge to search for FRB events in a huge amount of observational data with high speed and high accuracy.With the rapid advancement of the FRB research process,FRB searching has changed from archive data mining to either long-term monitoring of the repeating FRBs or all-sky surveys with specialized equipments.Therefore,establishing a highly efficient and high quality FRB search pipeline is the primary task in FRB research.Deep learning techniques provide new ideas for FRB search processing.We have detected radio bursts from FRB 20201124A in the L-band observational data of the Nanshan 26 m radio telescope(NSRT-26m)using the constructed deep learning based search pipeline named dispersed dynamic spectra search(DDSS).Afterwards,we further retrained the deep learning model and applied the DDSS framework to S-band observations.In this paper,we present the FRB observation system and search pipeline using the S-band receiver.We carried out search experiments,and successfully detected the radio bursts from the magnetar SGR J1935+2145and FRB 20220912A.The experimental results show that the search pipeline can complete the search efficiently and output the search results with high accuracy.
基金supported by the National Natural Science Foundation of China(NSFC,Grant Nos.11988101 and12041302)the International Partnership Program of the Chinese Academy of Sciences(grant No.114A11KYSB20210010)+5 种基金National Key R&D Program of China No.2023YFA1608004operated by the California Institute of Technology under a contract with the National Aeronautics and Space Administration(80NM0018D0004)the support of the Tianchi Talent Program of Xinjiang Uygur Autonomous Regionthe Collaborative Research Center 1601(SFB 1601 sub-project A2)funded by the Deutsche Forschungsgemeinschaft—500700252support from the University of Cologne and its Global Faculty program。
文摘Molecular oxygen abundance is a key parameter in understanding the chemical network of the interstellar medium.We estimate the molecular oxygen column density and abundance for a sample of Galactic massive star formation regions based on observations from the Submillimiter Wave Astronomy Satellite(SWAS)survey.We obtained an averaged O_(2)spectrum based on this sample using the(SWAS)survey data(O_(2),487.249 GHz,N=3-1,J=3-2).No emission or absorption feature is seen around the supposed central velocity with a total integration time of t_(total)=8.67×10^(3)hr and an rms noise per channel of 1.45 m K.Assuming a kinetic temperature T_(kin)=30 K,we derive the 3σupper limit of the O_(2)column density to be 3.3×10^(15)cm^(-2),close to the lowest values reported in Galactic massive star formation regions in previous studies.The corresponding O_(2)abundance upper limit is6.7×10^(-8),lower than all previous results based on SWAS observations and is close to the lowest reported value in massive star formation regions.On a galactic scale,our statistical results confirm a generally low O_(2)abundance for Galactic massive star formation regions.This abundance is also lower than results reported in extragalactic sources.
基金supported by the National Key R&D Program of China(No.2022YFE0133700)the National Natural Science Foundation of China(NSFC,grant Nos.12273008,11963003,12273007 and 62062025)+4 种基金the National SKA Program of China(No.2020SKA0110300)the Guizhou Province Science and Technology Support Program(General Project)No.Qianhe Support[2023]General 333,Science and Technology Foundation of Guizhou Province(Key Program,No.[2019]1432)the Guizhou Provincial Science and Technology Projects(Nos.ZK[2022]143 and ZK[2022]304)the Cultivation project of Guizhou University(No.[2020]76)。
文摘Pulsar search is always the basis of pulsar navigation,gravitational wave detection and other research topics.Currently,the volume of pulsar candidates collected by the Five-hundred-meter Aperture Spherical radio Telescope(FAST)shows an explosive growth rate that has brought challenges for its pulsar candidate filtering system.Particularly,the multi-view heterogeneous data and class imbalance between true pulsars and non-pulsar candidates have negative effects on traditional single-modal supervised classification methods.In this study,a multi-modal and semi-supervised learning based on a pulsar candidate sifting algorithm is presented,which adopts a hybrid ensemble clustering scheme of density-based and partition-based methods combined with a feature-level fusion strategy for input data and a data partition strategy for parallelization.Experiments on both High Time Resolution Universe SurveyⅡ(HTRU2)and actual FAST observation data demonstrate that the proposed algorithm could excellently identify pulsars:On HTRU2,the precision and recall rates of its parallel mode reach0.981 and 0.988 respectively.On FAST data,those of its parallel mode reach 0.891 and 0.961,meanwhile,the running time also significantly decreases with the increment of parallel nodes within limits.Thus,we can conclude that our algorithm could be a feasible idea for large scale pulsar candidate sifting for FAST drift scan observation.
基金supported by the National Key R&D Program of China(Nos.2021YFC2203502 and 2022YFF0711502)the National Natural Science Foundation of China(NSFC)(12173077 and 12073067)+7 种基金the Tianshan Innovation Team Plan of Xinjiang Uygur Autonomous Region(2022D14020)the Tianshan Talent Project of Xinjiang Uygur Autonomous Region(2022TSYCCX0095)the Scientific Instrument Developing Project of the Chinese Academy of Sciences(grant No.PTYQ2022YZZD01)China National Astronomical Data Center(NADC)the Operation,Maintenance and Upgrading Fund for Astronomical Telescopes and Facility Instruments,budgeted from the Ministry of Finance of China(MOF)and administrated by the Chinese Academy of Sciences(CAS)Natural Science Foundation of Xinjiang Uygur AutonomousRegion(2022D01A360)the CAS“Light of West China”program under No.2022-XBQNXZ-012supported by Astronomical Big Data Joint Research Center,cofounded by National Astronomical Observatories,Chinese Academy of Sciences。
文摘The radio telescope possesses high sensitivity and strong signal collection capabilities.While receiving celestial radiation signals,it also captures Radio Frequency Interferences(RFIs)introduced by human activities.RFI,as signals originating from sources other than the astronomical targets,significantly impacts the quality of astronomical data.This paper presents an RFI fast mitigation algorithm based on block Least Mean Square(LMS)algorithm.It enhances the traditional adaptive LMS filter by grouping L adjacent time-sampled points into one block and applying the same filter coefficients for filtering within each block.This transformation reduces multiplication calculations and enhances algorithm efficiency by leveraging the time-domain convolution theorem.The algorithm is tested using baseband data from the Parkes 64 m radio telescope's pulsar observations and simulated data.The results confirm the algorithm's effectiveness,as the pulsar profile after RFI mitigation closely matches the original pulsar profile.
基金funded by the National Natural Science Foundation of China(NSFC,grant Nos.12363011,52275270,and 52275269)Natural Science Foundation of Xinjiang Uygur Autonomous Region(No.2023D01C22)+1 种基金the Tianchi Talents Program of Xinjiang,the National Key Basic Research Program of China(No.2021YFC2203501)the Xinjiang Postdoctoral Foundation。
文摘Active reflectors are often used to compensate the surface distortion caused by environmental factors that degrade the electromagnetic performance of large high-frequency reflector antennas.This is crucial for maintaining high gain operation in antennas.A distortion compensation method for the active reflector of a large dual-reflector antenna is proposed.A relationship is established between the surface deformation and the optical path difference for the primary reflector by geometric optics.Subsequently,employing finite element analysis,a polynomial fitting approach is used to describe the impact of adjusting points on the reflector surface based on the coordinates of each node.By standardizing the positions of various panels on the reflector,the fitting ns can be applied to the reflector panels of similar shapes.Then,based on the distribution characteristics of the primary reflector panels,the adjustment equation for the actuators is derived by the influence matrix method.It can be used to determine the adjustment amount of actuators to reduce the rms of the optical path difference.And,the least squares method is employed to resolve the matrix equation.The example of a 110 m aperture dual-reflector antenna is carried out by finite element analysis and the proposed method.The results show that the optical path difference is reduced significantly at various elevation cases,which indicates that the proposed method is effective.