Let L=-div(A▽) be a second order divergence form elliptic operator, where A is an accretive, n×n matrix with bounded measurable complex coefficients on R^n. Let L^α/2 (0 <α< 1) denotes the fractional dif...Let L=-div(A▽) be a second order divergence form elliptic operator, where A is an accretive, n×n matrix with bounded measurable complex coefficients on R^n. Let L^α/2 (0 <α< 1) denotes the fractional differential operator associated with L and (-△)^α/2b ∈ L^n/α(R^n). In this article, we prove that the commutator[b, L^α/2] is bounded from the homogenous Sobolev space Lα%2 (R^n) to L^2(R^n).展开更多
基金supported by NSFC(11471033),NCET of China(NCET-11-0574)the Fundamental Research Funds for the Central Universities(FRF-BR-16-011A)
文摘Let L=-div(A▽) be a second order divergence form elliptic operator, where A is an accretive, n×n matrix with bounded measurable complex coefficients on R^n. Let L^α/2 (0 <α< 1) denotes the fractional differential operator associated with L and (-△)^α/2b ∈ L^n/α(R^n). In this article, we prove that the commutator[b, L^α/2] is bounded from the homogenous Sobolev space Lα%2 (R^n) to L^2(R^n).