BACKGROUND Helicobacter pylori(HP),the most common pathogenic microorganism in stomach,can induce inflammatory reactions in the gastric mucosa,causing chronic gastritis and even gastric cancer.HP infection affects ove...BACKGROUND Helicobacter pylori(HP),the most common pathogenic microorganism in stomach,can induce inflammatory reactions in the gastric mucosa,causing chronic gastritis and even gastric cancer.HP infection affects over 4.4 billion people globally,with a worldwide infection rate of up to 50%.The multidrug resistance of HP poses a serious challenge to eradication.It has been monstrated that compared to bismuth quadruple therapy,Qingre Huashi decoction(QHD)combined with triple therapy exhibits comparable eradication rates but with a lower incidence of adverse reactions;in addition,QHD directly inhibit and kill HP in vitro.METHODS In this study,12 HP strains were isolated in vitro after biopsy during gastroscopy of HP-infected patients.In vitro,the minimum inhibitory concentration(MIC)values for clinical HP strains and biofilm quantification were determined through the E-test method and crystal violet staining,respectively.The most robust biofilm-forming strain of HP was selected,and QHD was evaluated for its inhibitory and bactericidal effects on the strain with strong biofilm formation.This assessment was performed using agar dilution,E-test,killing dynamics,and transmission electron microscopy(TEM).The study also explored the impact of QHD on antibiotic resistance in these HP strains with strong biofilm formation.Crystalline violet method,scanning electron microscopy,laser confocal scanning microscopy,and(p)ppGpp chromatographic identification were employed to evaluate the effect of QHD on biofilm in strong biofilm-forming HP strains.The effect of QHD on biofilm and efflux pump-related gene expression was evaluated by quantitative polymerase chain reaction.Non-targeted metabolomics with UHPLC-MS/MS was used to identify potential metabolic pathways and biomarkers which were different between the NC and QHD groups.RESULTS HP could form biofilms of different degrees in vitro,and the intensity of formation was associated with the drug resistance of the strain.QHD had strong bacteriostatic and bactericidal effects on HP,with MICs of 32-64 mg/mL.QHD could inhibit the biofilm formation of the strong biofilm-forming HP strains,disrupt the biofilm structure,lower the accumulation of(p)ppGpp,decrease the expression of biofilm-related genes including LuxS,Spot,glup(HP1174),NapA,and CagE,and reduce the expression of efflux pump-related genes such as HP0605,HP0971,HP1327,and HP1489.Based on metabolomic analysis,QHD induced oxidative stress in HP,enhanced metabolism,and potentially inhibited relevant signaling pathways by upregulating adenosine monophosphate(AMP),thereby affecting HP growth,metabolism,and protein synthesis.CONCLUSION QHD exerts bacteriostatic and bactericidal effects on HP,and reduces HP drug resistance by inhibiting HP biofilm formation,destroying its biofilm structure,inhibiting the expression of biofilm-related genes and efflux pump-related genes,enhancing HP metabolism,and activating AMP in HP.展开更多
Background:Actinidia chinensis Planch.roots(AcRoots)have been applied as an anti-inflammatory and antitumor drug in the treatment of gastric cancer(GC).However,their mechanisms against GC cells remain unclear.To inves...Background:Actinidia chinensis Planch.roots(AcRoots)have been applied as an anti-inflammatory and antitumor drug in the treatment of gastric cancer(GC).However,their mechanisms against GC cells remain unclear.To investigate the anticancer effect of AcRoots in GC and the possible underlying mechanism by using network pharmacology.Methods:Differentially expressed genes between gastric precancerous lesions and cancer were analyzed in Gene Expression Omnibus datasets,and these genes were overlapped with potential targets of AcRoots.Potential targets and pathways for AcRoots treatment of GC predicted by network pharmacology.Furthermore,we used the GC cell line HGC27 to explore the molecular mechanisms in the context of hub genes in apoptosis,invasion,metastasis,and epithelial to mesenchymal transition-promoting factors.Molecular docking between hub targets and active drug components was also performed.Results:Network pharmacological analysis suggested that the potential mechanism was related to the Wnt pathway and predicted nine hub genes.In in vitro studies,AcRoots significantly decreased HGC27 cell viability and promoted apoptosis by upregulating caspase3 and downregulating Bcl2.Moreover,it suppressed invasion and metastasis as well as the expression of epithelial to mesenchymal transition-related factors.In addition,AcRoots affected the phosphorylation level of GSK3β(Ser9)in the Wnt pathway to promote the degradation ofβ-catenin,resulting in the downregulation of the downstream target genes c-myc,cyclin D1 and snail.All the experimental results were consistent with the network pharmacology results.Conclusion:This study combined network pharmacology with in vitro experiments to provide valid evidence for the clinical promotion of AcRoots.展开更多
基金Supported by the National Natural Science Foundation of China,No.81973615 and No.82304930Natural Science Foundation of Beijing,No.7332323Capital’s Funds for Health Improvement and Research,No.CF2022-2-40711.
文摘BACKGROUND Helicobacter pylori(HP),the most common pathogenic microorganism in stomach,can induce inflammatory reactions in the gastric mucosa,causing chronic gastritis and even gastric cancer.HP infection affects over 4.4 billion people globally,with a worldwide infection rate of up to 50%.The multidrug resistance of HP poses a serious challenge to eradication.It has been monstrated that compared to bismuth quadruple therapy,Qingre Huashi decoction(QHD)combined with triple therapy exhibits comparable eradication rates but with a lower incidence of adverse reactions;in addition,QHD directly inhibit and kill HP in vitro.METHODS In this study,12 HP strains were isolated in vitro after biopsy during gastroscopy of HP-infected patients.In vitro,the minimum inhibitory concentration(MIC)values for clinical HP strains and biofilm quantification were determined through the E-test method and crystal violet staining,respectively.The most robust biofilm-forming strain of HP was selected,and QHD was evaluated for its inhibitory and bactericidal effects on the strain with strong biofilm formation.This assessment was performed using agar dilution,E-test,killing dynamics,and transmission electron microscopy(TEM).The study also explored the impact of QHD on antibiotic resistance in these HP strains with strong biofilm formation.Crystalline violet method,scanning electron microscopy,laser confocal scanning microscopy,and(p)ppGpp chromatographic identification were employed to evaluate the effect of QHD on biofilm in strong biofilm-forming HP strains.The effect of QHD on biofilm and efflux pump-related gene expression was evaluated by quantitative polymerase chain reaction.Non-targeted metabolomics with UHPLC-MS/MS was used to identify potential metabolic pathways and biomarkers which were different between the NC and QHD groups.RESULTS HP could form biofilms of different degrees in vitro,and the intensity of formation was associated with the drug resistance of the strain.QHD had strong bacteriostatic and bactericidal effects on HP,with MICs of 32-64 mg/mL.QHD could inhibit the biofilm formation of the strong biofilm-forming HP strains,disrupt the biofilm structure,lower the accumulation of(p)ppGpp,decrease the expression of biofilm-related genes including LuxS,Spot,glup(HP1174),NapA,and CagE,and reduce the expression of efflux pump-related genes such as HP0605,HP0971,HP1327,and HP1489.Based on metabolomic analysis,QHD induced oxidative stress in HP,enhanced metabolism,and potentially inhibited relevant signaling pathways by upregulating adenosine monophosphate(AMP),thereby affecting HP growth,metabolism,and protein synthesis.CONCLUSION QHD exerts bacteriostatic and bactericidal effects on HP,and reduces HP drug resistance by inhibiting HP biofilm formation,destroying its biofilm structure,inhibiting the expression of biofilm-related genes and efflux pump-related genes,enhancing HP metabolism,and activating AMP in HP.
基金funded by the National Natural Science Foundation of China(Project No.81973615,No.81803910).
文摘Background:Actinidia chinensis Planch.roots(AcRoots)have been applied as an anti-inflammatory and antitumor drug in the treatment of gastric cancer(GC).However,their mechanisms against GC cells remain unclear.To investigate the anticancer effect of AcRoots in GC and the possible underlying mechanism by using network pharmacology.Methods:Differentially expressed genes between gastric precancerous lesions and cancer were analyzed in Gene Expression Omnibus datasets,and these genes were overlapped with potential targets of AcRoots.Potential targets and pathways for AcRoots treatment of GC predicted by network pharmacology.Furthermore,we used the GC cell line HGC27 to explore the molecular mechanisms in the context of hub genes in apoptosis,invasion,metastasis,and epithelial to mesenchymal transition-promoting factors.Molecular docking between hub targets and active drug components was also performed.Results:Network pharmacological analysis suggested that the potential mechanism was related to the Wnt pathway and predicted nine hub genes.In in vitro studies,AcRoots significantly decreased HGC27 cell viability and promoted apoptosis by upregulating caspase3 and downregulating Bcl2.Moreover,it suppressed invasion and metastasis as well as the expression of epithelial to mesenchymal transition-related factors.In addition,AcRoots affected the phosphorylation level of GSK3β(Ser9)in the Wnt pathway to promote the degradation ofβ-catenin,resulting in the downregulation of the downstream target genes c-myc,cyclin D1 and snail.All the experimental results were consistent with the network pharmacology results.Conclusion:This study combined network pharmacology with in vitro experiments to provide valid evidence for the clinical promotion of AcRoots.