With a growing sample of fast radio bursts(FRBs),we investigate the energy budget of different power sources within the framework of magnetar starquake triggering mechanism.During a starquake,the energy can be release...With a growing sample of fast radio bursts(FRBs),we investigate the energy budget of different power sources within the framework of magnetar starquake triggering mechanism.During a starquake,the energy can be released in any form through strain,magnetic,rotational,and gravitational energies.The strain energy can be converted from three other kinds of energy during starquakes.The following findings are revealed:(1)The crust can store free magnetic energy of~10^(46)erg by existing toroidal fields,sustaining 10^(6)bursts with frequent starquakes occurring due to crustal instability.(2)The strain energy develops as a rigid object spins down,which can be released during a global starquake accompanied by a glitch.However,it takes a long time to accumulate enough strain energy via spindown.(3)The rotational energy of a magnetar with P■0.1 s can match the energy and luminosity budget of FRBs.(4)The budget of the total gravitational energy is high,but the mechanism and efficiency of converting this energy to radiation deserve further exploration.展开更多
A reaction-coupling strategy is often employed for CO_(2)hydrogenation to produce fuels and chemicals using oxide/zeolite bifunctional catalysts.Because the oxide components are responsible for CO_(2)activation,unders...A reaction-coupling strategy is often employed for CO_(2)hydrogenation to produce fuels and chemicals using oxide/zeolite bifunctional catalysts.Because the oxide components are responsible for CO_(2)activation,understanding the structural effects of these oxides is crucial,however,these effects still remain unclear.In this study,we combined In_(2)O_(3),with varying particle sizes,and SAPO‐34 as bifunctional catalysts for CO_(2)hydrogenation.The CO_(2)conversion and selectivity of the lower olefins increased as the average In_(2)O_(3)crystallite size decreased from 29 to 19 nm;this trend mainly due to the increasing number of oxygen vacancies responsible for CO_(2) and H_(2) activation.However,In_(2)O_(3)particles smaller than 19 nm are more prone to sintering than those with other sizes.The results suggest that 19 nm is the optimal size of In_(2)O_(3)for CO_(2)hydrogenation to lower olefins and that the oxide particle size is crucial for designing catalysts with high activity,high selectivity,and high stability.展开更多
The hydrogenation of carbon dioxide(CO_(2))to produce chemicals and transportation liquid fuels in huge demand via heterogeneous thermochemical catalysis achieved using renewable energy has received increasing attenti...The hydrogenation of carbon dioxide(CO_(2))to produce chemicals and transportation liquid fuels in huge demand via heterogeneous thermochemical catalysis achieved using renewable energy has received increasing attention,and substantial advances have been made in this research field in recent years.In this study,we summarize our progress in the rational design and construction of highly efficient catalysts for CO_(2) hydrogenation to methanol,lower olefins,aromatics,and gasolineand jet fuel-range hydrocarbons.The structure‐performance relationship,nature of the active sites,and mechanism of the reactions occurring over these catalysts are explored by combining computational and experimental evidence.The results of this study will promote further fundamental studies and industrial applications of heterogeneous catalysts for CO_(2) hydrogenation to produce bulk chemicals and liquid fuels.展开更多
Methanol synthesis is one of the most important industrially-viable approaches for carbon dioxide(CO_(2)) utilization, as the produced methanol can be used as a platform chemical for manufacturing green fuels and chem...Methanol synthesis is one of the most important industrially-viable approaches for carbon dioxide(CO_(2)) utilization, as the produced methanol can be used as a platform chemical for manufacturing green fuels and chemicals. The In_(2)O_(3) catalysts are ideal for sustainable methanol synthesis and have received considerable attention. Herein, Co-, Ni-and Cu-modified In_(2)O_(3) catalysts were fabricated with high dispersion and high stability to improve the hydrogenation performance. The Ni-promoted In_(2)O_(3) catalyst in the form of high dispersion possessed the largest amount of oxygen vacancies and the strongest ability for H_(2) activation, leading to the highest CO_(2) conversion and space time yield of methanol of 0.390 g_(Me OH)g_(cat)^(-1)h^(-1) with CH_(3)OH selectivity of 68.7%. In addition, the catalyst exhibits very stable performance over 120 h on stream, which suggests the promising prospect for industrial applications. Further experimental and theoretical studies demonstrate that surface Ni doping promotes the formation of oxygen defects on the In_(2)O_(3) catalyst, although it also results in lower methanol selectivity. Surprisingly, subsurface Ni dopants are found to be more beneficial for methanol formation than surface Ni dopants, so the Nipromoted In_(2)O_(3)catalyst with a lower surface Ni content at the similar Ni loading can reach higher methanol selectivity and productivity. This work thus provides theoretical guidance for significantly improving the CO_(2) reactivity of In_(2)O_(3)-based catalysts while maintaining high methanol selectivity.展开更多
Room air conditioners (RACs) are crucial household appliances that consume substantial amounts of electricity. Their efficiency tends to deteriorate over time, resulting in unnecessary energy wastage. Smart meters hav...Room air conditioners (RACs) are crucial household appliances that consume substantial amounts of electricity. Their efficiency tends to deteriorate over time, resulting in unnecessary energy wastage. Smart meters have become popular to monitor electricity use of home appliances, offering underexplored opportunities to evaluate RAC operational efficiency. Traditional supervised data-driven analysis methods necessitate a large sample size of RACs and their efficiency, which can be challenging to acquire. Additionally, the prevalence of zero values when RACs are off can skew training. To overcome these challenges, we assembled a dataset comprising a limited number of window-type RACs with measured operational efficiencies from 2021. We devised an intuitive zero filter and resampling protocol to process smart meter data and increase training samples. A deep learning-based encoder–decoder model was developed to evaluate RAC efficiency. Our findings suggest that our protocol and model accurately classify and regress RAC operational efficiency. We verified the usefulness of our approach by evaluating the RACs replaced in 2022 using 2022 smart meter data. Our case study demonstrates that repairing or replacing an inefficient RAC can save electricity by up to 17 %. Overall, our study offers a potential energy conservation solution by leveraging smart meters for regularly assessing RAC operational efficiency and facilitating smart preventive maintenance.展开更多
Parabens(PBs),especially propylparaben,commonly used in consumer products,pose environmental and health concerns.This study explored propylparaben’s cytotoxicity on HTR-8/SVneo human trophoblast cells,revealing signi...Parabens(PBs),especially propylparaben,commonly used in consumer products,pose environmental and health concerns.This study explored propylparaben’s cytotoxicity on HTR-8/SVneo human trophoblast cells,revealing significant dosedependent cytotoxic effects,particularly post 48-h exposure.Elevated propylparaben levels triggered apoptosis,evidenced by increased Bax and activated Caspase-3,and induced the G0/G1 cell cycle arrest.Concurrently,an increase in reactive oxygen species and reduced mitochondrial membrane potential indicated oxidative stress and mitochondrial dysfunction.Although Nacetylcysteine(NAC)treatment reduced oxidative stress,cell invasiveness persisted,suggesting propylparaben might affect cell migration through nonoxidative mechanisms.Integrated transcriptome analysis through RNA sequencing revealed 3488 differentially expressed genes affected by propylparaben,highlighting changes in pathways like apoptosis and cell cycle regulation and identifying seven hub genes as potential biomarkers for pregnancy-related complications.This study comprehensively demonstrates the cytotoxic effects of propylparaben on human trophoblast cells,notably through apoptosis induction and cell cycle disruption,thereby providing crucial insights into its potential risks for reproductive health.展开更多
The application of polypropylene mesh(PPM)in pelvic organ prolapse(POP)treatment was severely limited by the complications associated with PPM,such as mesh exposure,chronic inflammatory reactions and postoperative hem...The application of polypropylene mesh(PPM)in pelvic organ prolapse(POP)treatment was severely limited by the complications associated with PPM,such as mesh exposure,chronic inflammatory reactions and postoperative hematoma.This study applied a method of fabricating a hydrogel-mesh complex(PPM+TA@GelMA)to cross-link tannic acid(TA)directly with Methacrylate Gelatin(GelMA)hydrogel and thus to form a coating for PPM.This one-step coating modification improved the hydrophilicity and cyto-compatibility of PPM.The hemostatic effect of PPMtTA@GelMA was confirmed through tail amputation test.Through the defect tissue repair experiments in vivo,it was proved that PPMtTA@GelMA had effects of anti-inflammation and promoting tissue repair and regulated the M2 subtype macrophages polarization for tissue repair.The TAloaded hydrogel coating endued PPM with multiple functions.It is believed that the novel hydrogel-mesh complex and its fabrication method will have great significance in basic research and clinical application.展开更多
基金supported by the National SKA Program of China(No.2020SKA0120100)the Strategic Priority Research Program of the CAS(No.XDB0550300)+1 种基金support from the National Natural Science Foundation of China(NSFC,Grant Nos.11988101 and 11933004)from the New Cornerstone Science Foundation through the New Cornerstone Investigator Program and the XPLORER PRIZE。
文摘With a growing sample of fast radio bursts(FRBs),we investigate the energy budget of different power sources within the framework of magnetar starquake triggering mechanism.During a starquake,the energy can be released in any form through strain,magnetic,rotational,and gravitational energies.The strain energy can be converted from three other kinds of energy during starquakes.The following findings are revealed:(1)The crust can store free magnetic energy of~10^(46)erg by existing toroidal fields,sustaining 10^(6)bursts with frequent starquakes occurring due to crustal instability.(2)The strain energy develops as a rigid object spins down,which can be released during a global starquake accompanied by a glitch.However,it takes a long time to accumulate enough strain energy via spindown.(3)The rotational energy of a magnetar with P■0.1 s can match the energy and luminosity budget of FRBs.(4)The budget of the total gravitational energy is high,but the mechanism and efficiency of converting this energy to radiation deserve further exploration.
文摘A reaction-coupling strategy is often employed for CO_(2)hydrogenation to produce fuels and chemicals using oxide/zeolite bifunctional catalysts.Because the oxide components are responsible for CO_(2)activation,understanding the structural effects of these oxides is crucial,however,these effects still remain unclear.In this study,we combined In_(2)O_(3),with varying particle sizes,and SAPO‐34 as bifunctional catalysts for CO_(2)hydrogenation.The CO_(2)conversion and selectivity of the lower olefins increased as the average In_(2)O_(3)crystallite size decreased from 29 to 19 nm;this trend mainly due to the increasing number of oxygen vacancies responsible for CO_(2) and H_(2) activation.However,In_(2)O_(3)particles smaller than 19 nm are more prone to sintering than those with other sizes.The results suggest that 19 nm is the optimal size of In_(2)O_(3)for CO_(2)hydrogenation to lower olefins and that the oxide particle size is crucial for designing catalysts with high activity,high selectivity,and high stability.
文摘The hydrogenation of carbon dioxide(CO_(2))to produce chemicals and transportation liquid fuels in huge demand via heterogeneous thermochemical catalysis achieved using renewable energy has received increasing attention,and substantial advances have been made in this research field in recent years.In this study,we summarize our progress in the rational design and construction of highly efficient catalysts for CO_(2) hydrogenation to methanol,lower olefins,aromatics,and gasolineand jet fuel-range hydrocarbons.The structure‐performance relationship,nature of the active sites,and mechanism of the reactions occurring over these catalysts are explored by combining computational and experimental evidence.The results of this study will promote further fundamental studies and industrial applications of heterogeneous catalysts for CO_(2) hydrogenation to produce bulk chemicals and liquid fuels.
基金financially supported by the National Natural Science Foundation of China (22293023, 22293025, 22172189,22172188)CAS Youth Interdisciplinary Team,Program of Shanghai Academic Research Leader (22XD1424100)+4 种基金Science and Technology Commission of Shanghai Municipality (23ZR1481700)Shanghai Sailing Program from the Science and Technology Commission of Shanghai Municipality (23YF1453400)Joint Fund of the Yulin University and the Dalian National Laboratory for Clean Energy (Grant. YLU-DNL Fund 2022001)Qinchuangyuan “Scientists+Engineers” Team Construction Program of Shaanxi Province (2023KXJ-276)the research program from Shaanxi Beiyuan Chemical Industry Group Co.,Ltd.(2023413611014)。
文摘Methanol synthesis is one of the most important industrially-viable approaches for carbon dioxide(CO_(2)) utilization, as the produced methanol can be used as a platform chemical for manufacturing green fuels and chemicals. The In_(2)O_(3) catalysts are ideal for sustainable methanol synthesis and have received considerable attention. Herein, Co-, Ni-and Cu-modified In_(2)O_(3) catalysts were fabricated with high dispersion and high stability to improve the hydrogenation performance. The Ni-promoted In_(2)O_(3) catalyst in the form of high dispersion possessed the largest amount of oxygen vacancies and the strongest ability for H_(2) activation, leading to the highest CO_(2) conversion and space time yield of methanol of 0.390 g_(Me OH)g_(cat)^(-1)h^(-1) with CH_(3)OH selectivity of 68.7%. In addition, the catalyst exhibits very stable performance over 120 h on stream, which suggests the promising prospect for industrial applications. Further experimental and theoretical studies demonstrate that surface Ni doping promotes the formation of oxygen defects on the In_(2)O_(3) catalyst, although it also results in lower methanol selectivity. Surprisingly, subsurface Ni dopants are found to be more beneficial for methanol formation than surface Ni dopants, so the Nipromoted In_(2)O_(3)catalyst with a lower surface Ni content at the similar Ni loading can reach higher methanol selectivity and productivity. This work thus provides theoretical guidance for significantly improving the CO_(2) reactivity of In_(2)O_(3)-based catalysts while maintaining high methanol selectivity.
基金supported by Sustainable Smart Campus as a Living Lab of Hong Kong University of Science and Technology and the Strategic Topics Grant from Hong Kong Research Grants Council(STG2/E-605/23-N).
文摘Room air conditioners (RACs) are crucial household appliances that consume substantial amounts of electricity. Their efficiency tends to deteriorate over time, resulting in unnecessary energy wastage. Smart meters have become popular to monitor electricity use of home appliances, offering underexplored opportunities to evaluate RAC operational efficiency. Traditional supervised data-driven analysis methods necessitate a large sample size of RACs and their efficiency, which can be challenging to acquire. Additionally, the prevalence of zero values when RACs are off can skew training. To overcome these challenges, we assembled a dataset comprising a limited number of window-type RACs with measured operational efficiencies from 2021. We devised an intuitive zero filter and resampling protocol to process smart meter data and increase training samples. A deep learning-based encoder–decoder model was developed to evaluate RAC efficiency. Our findings suggest that our protocol and model accurately classify and regress RAC operational efficiency. We verified the usefulness of our approach by evaluating the RACs replaced in 2022 using 2022 smart meter data. Our case study demonstrates that repairing or replacing an inefficient RAC can save electricity by up to 17 %. Overall, our study offers a potential energy conservation solution by leveraging smart meters for regularly assessing RAC operational efficiency and facilitating smart preventive maintenance.
基金supported by Tianjin Key Laboratory of Risk Assessment and Control Technology for Environment and Food Safety,Tianjin Institute of Environmental and Operational Medicine.
文摘Parabens(PBs),especially propylparaben,commonly used in consumer products,pose environmental and health concerns.This study explored propylparaben’s cytotoxicity on HTR-8/SVneo human trophoblast cells,revealing significant dosedependent cytotoxic effects,particularly post 48-h exposure.Elevated propylparaben levels triggered apoptosis,evidenced by increased Bax and activated Caspase-3,and induced the G0/G1 cell cycle arrest.Concurrently,an increase in reactive oxygen species and reduced mitochondrial membrane potential indicated oxidative stress and mitochondrial dysfunction.Although Nacetylcysteine(NAC)treatment reduced oxidative stress,cell invasiveness persisted,suggesting propylparaben might affect cell migration through nonoxidative mechanisms.Integrated transcriptome analysis through RNA sequencing revealed 3488 differentially expressed genes affected by propylparaben,highlighting changes in pathways like apoptosis and cell cycle regulation and identifying seven hub genes as potential biomarkers for pregnancy-related complications.This study comprehensively demonstrates the cytotoxic effects of propylparaben on human trophoblast cells,notably through apoptosis induction and cell cycle disruption,thereby providing crucial insights into its potential risks for reproductive health.
基金supported by the National Natural Science Foundation of China(82071630,81771560,81802583,81702745)Tongji Hospital National Natural Science Foundation Training Project(GJPY2119).
文摘The application of polypropylene mesh(PPM)in pelvic organ prolapse(POP)treatment was severely limited by the complications associated with PPM,such as mesh exposure,chronic inflammatory reactions and postoperative hematoma.This study applied a method of fabricating a hydrogel-mesh complex(PPM+TA@GelMA)to cross-link tannic acid(TA)directly with Methacrylate Gelatin(GelMA)hydrogel and thus to form a coating for PPM.This one-step coating modification improved the hydrophilicity and cyto-compatibility of PPM.The hemostatic effect of PPMtTA@GelMA was confirmed through tail amputation test.Through the defect tissue repair experiments in vivo,it was proved that PPMtTA@GelMA had effects of anti-inflammation and promoting tissue repair and regulated the M2 subtype macrophages polarization for tissue repair.The TAloaded hydrogel coating endued PPM with multiple functions.It is believed that the novel hydrogel-mesh complex and its fabrication method will have great significance in basic research and clinical application.