Particle density is an important physical property of atmospheric particles. The information on high time-resolution size-resolved particle density is essential for understanding the atmospheric physical and chemical ...Particle density is an important physical property of atmospheric particles. The information on high time-resolution size-resolved particle density is essential for understanding the atmospheric physical and chemical aging processes of aerosols particles. In the present study, a centrifugal particle mass analyzer (CPMA) combined with a differential mobility analyzer (DMA) was deployed to determine the size-resolved effective density of 50 to 350 nm particles at a rural site of Beijing during summer 2016. The measured particle effective densities decreased with increasing particle sizes and ranged from 1.43 to 1.55 g/cm3, on average. The effective particle density distributions were dominated by a mode peaked at around 1.5 g/cm3 for 50 to 350 nm particles. Extra modes with peaks at 1.0, 0.8, and 0.6 g/cm3 for 150, 240, and 350 nm particles, which might be freshly emitted soot particles, were observed during intensive primary emissions episodes. The particle effective densities showed a diurnal variation pattern, with higher values during daytime. A case study showed that the effective density of Aitken mode particles during the new particle formation (NPF) event decreased considerably, indicating the significant contribution of organics to new particle growth.展开更多
The mechanisms of new particle formation(NPF)events that occurred under high aerosol loadings(“polluted”NPF)in the atmosphere have been unclear,which has inhibited the precision of particlepollution control.To deepe...The mechanisms of new particle formation(NPF)events that occurred under high aerosol loadings(“polluted”NPF)in the atmosphere have been unclear,which has inhibited the precision of particlepollution control.To deepen the understanding of how the“polluted”NPF events occur,a one-monthcomprehensive measurement was conducted in the atmosphere of Beijing during the summer of2016.The“clean”NPF events(frequency=22%)(condensation sink,CS<0.015 s^(-1))were found to becaused by local nucleation and growth.The“polluted”NPF events(frequency=28%)(CS>0.015 s^(-1))were influenced by both local nucleation-growth and regional transport,and the contributions from thetwo factors to 6e25 nm particle number concentration were 60%and 40%,respectively.This studyemphasized the importance of the transport for nanoparticles in relatively polluted atmospheres,and forthat the regional joint particle pollution control would be an essential policy.展开更多
Brake wear is an important but unregulated vehicle-related source of atmospheric particulate matter(PM).The single-particle spectral fingerprints of brake wear particles(BWPs)provide essential information for understa...Brake wear is an important but unregulated vehicle-related source of atmospheric particulate matter(PM).The single-particle spectral fingerprints of brake wear particles(BWPs)provide essential information for understanding their formation mechanism and atmospheric contributions.Herein,we obtained the single-particle mass spectra of BWPs by combining a brake dynamometer with an online single particle aerosol mass spectrometer and quantified real-world BWP emissions through a tunnel observation in Tianjin,China.The pure BWPs mainly include three distinct types of particles,namely,Bacontaining particles,mineral particles,and carbon-containing particles,accounting for 44.2%,43.4%,and 10.3%of the total BWP number concentration,respectively.The diversified mass spectra indicate complex BWP formation pathways,such as mechanical,phase transition,and chemical processes.Notably,the mass spectra of Ba-containing particles are unique,which allows them to serve as an excellent indicator for estimating ambient BWP concentrations.By evaluating this indicator,we find that approximately 4.0%of the PM in the tunnel could be attributable to brake wear;the real-world fleet-average emission factor of 0.28 mg km1 veh1 is consistent with the estimation obtained using the receptor model.The results presented herein can be used to inform assessments of the environmental and health impacts of BWPs to formulate effective emissions control policies.展开更多
The photolysis frequency of NO2, j(NO2), is an important analytical parameter in the study of tropospheric chemistry. A chemical actinometer (CA) was built to measure the ambient j(NQ) based on a high precision ...The photolysis frequency of NO2, j(NO2), is an important analytical parameter in the study of tropospheric chemistry. A chemical actinometer (CA) was built to measure the ambient j(NQ) based on a high precision NOx instrument with 1 min time resolution. Parallel measurements of the ambient j(NO2) by using the CA and a commercial spectroradiometer (SR) were conducted at a typical urban site (Peking University Urban Environmental Monitoring Station) in Beijing. In general, good agreement was achieved between the CA and SR data with a high linear correlation coefficient (R2 = 0.977) and a regression slope of 1.12. The regression offset was negligible compared to the measured signal level. Thej(NO2) data were calculated using the tropospheric ultraviolet visible radiation (TUV) model, which was constrained to observe aerosol optical properties. The calculated j(NO2) was intermediate between the results obtained with CA and SR, demonstrating the consistency of all the parameters observed at this site. The good agreement between the CA and SR data, and the consistency with the TUV model results, demonstrate the good performance of the installed SR instrument. Since a drift of the SR sensitivity is expected by the manufacturer, we propose a regular check of the data acquired via SR against those obtained by CA for long-term delivery of a high quality series ofj(NO2) data. Establishing such a time series will be invaluable for analyzing the long-term atmospheric oxidation capacity trends as well as O3 pollution for urban Beijing.展开更多
Light-duty gasoline vehicles have drawn public attention in China due to their significant primary emissions of particulate matter and volatile organic compounds(VOCs). However,little information on secondary aeroso...Light-duty gasoline vehicles have drawn public attention in China due to their significant primary emissions of particulate matter and volatile organic compounds(VOCs). However,little information on secondary aerosol formation from exhaust for Chinese vehicles and fuel conditions is available. In this study, chamber experiments were conducted to quantify the potential of secondary aerosol formation from the exhaust of a port fuel injection gasoline engine. The engine and fuel used are common in the Chinese market, and the fuel satisfies the China V gasoline fuel standard. Substantial secondary aerosol formation was observed during a 4–5 hr simulation, which was estimated to represent more than 10 days of equivalent atmospheric photo-oxidation in Beijing. As a consequence, the extreme case secondary organic aerosol(SOA) production was 426 ± 85 mg/kg-fuel, with high levels of precursors and OH exposure. The low hygroscopicity of the aerosols formed inside the chamber suggests that SOA was the dominant chemical composition. Fourteen percent of SOA measured in the chamber experiments could be explained through the oxidation of speciated single-ring aromatics. Unspeciated precursors, such as intermediate-volatility organic compounds and semi-volatile organic compounds, might be significant for SOA formation from gasoline VOCs. We concluded that reductions of emissions of aerosol precursor gases from vehicles are essential to mediate pollution in China.展开更多
基金supported by the following projects:the National Key R&D(Research and Development)Program of China(No.2016YFC0202800:Task 1)the National Natural Science Foundation of China(Nos.41475127,41571130021)the framework research program on ‘Photochemical smog in China’ financed by the Swedish Research Council(No.639-2013-6917)
文摘Particle density is an important physical property of atmospheric particles. The information on high time-resolution size-resolved particle density is essential for understanding the atmospheric physical and chemical aging processes of aerosols particles. In the present study, a centrifugal particle mass analyzer (CPMA) combined with a differential mobility analyzer (DMA) was deployed to determine the size-resolved effective density of 50 to 350 nm particles at a rural site of Beijing during summer 2016. The measured particle effective densities decreased with increasing particle sizes and ranged from 1.43 to 1.55 g/cm3, on average. The effective particle density distributions were dominated by a mode peaked at around 1.5 g/cm3 for 50 to 350 nm particles. Extra modes with peaks at 1.0, 0.8, and 0.6 g/cm3 for 150, 240, and 350 nm particles, which might be freshly emitted soot particles, were observed during intensive primary emissions episodes. The particle effective densities showed a diurnal variation pattern, with higher values during daytime. A case study showed that the effective density of Aitken mode particles during the new particle formation (NPF) event decreased considerably, indicating the significant contribution of organics to new particle growth.
基金This study is funded by the National Natural Science Foundationof China(NSFC)(grant No.91844301)the NSFC e Creative ResearchGroup Fund(grant No.22221004)+1 种基金the National Key Research andDevelopment Program of China(grant No.2022YFC3701000,Task1)the bilateral SwedeneChina framework program“Photochemical smog in China:formation,transformation,impactand abatement strategies”(grant No.639-2013-6917).
文摘The mechanisms of new particle formation(NPF)events that occurred under high aerosol loadings(“polluted”NPF)in the atmosphere have been unclear,which has inhibited the precision of particlepollution control.To deepen the understanding of how the“polluted”NPF events occur,a one-monthcomprehensive measurement was conducted in the atmosphere of Beijing during the summer of2016.The“clean”NPF events(frequency=22%)(condensation sink,CS<0.015 s^(-1))were found to becaused by local nucleation and growth.The“polluted”NPF events(frequency=28%)(CS>0.015 s^(-1))were influenced by both local nucleation-growth and regional transport,and the contributions from thetwo factors to 6e25 nm particle number concentration were 60%and 40%,respectively.This studyemphasized the importance of the transport for nanoparticles in relatively polluted atmospheres,and forthat the regional joint particle pollution control would be an essential policy.
基金supported by the National key research and development program of China(2022YFE0135000)the Tianjin Science and Technology Plan Project(19YFZCSF00960)+2 种基金the National Natural Science Foundation of China(42177084,42175123,42107114,42107125)the Natural Science Foundation of Tianjin(20JCYBJC01270)the Fundamental Research Funds for the Central Universities(63221411).
文摘Brake wear is an important but unregulated vehicle-related source of atmospheric particulate matter(PM).The single-particle spectral fingerprints of brake wear particles(BWPs)provide essential information for understanding their formation mechanism and atmospheric contributions.Herein,we obtained the single-particle mass spectra of BWPs by combining a brake dynamometer with an online single particle aerosol mass spectrometer and quantified real-world BWP emissions through a tunnel observation in Tianjin,China.The pure BWPs mainly include three distinct types of particles,namely,Bacontaining particles,mineral particles,and carbon-containing particles,accounting for 44.2%,43.4%,and 10.3%of the total BWP number concentration,respectively.The diversified mass spectra indicate complex BWP formation pathways,such as mechanical,phase transition,and chemical processes.Notably,the mass spectra of Ba-containing particles are unique,which allows them to serve as an excellent indicator for estimating ambient BWP concentrations.By evaluating this indicator,we find that approximately 4.0%of the PM in the tunnel could be attributable to brake wear;the real-world fleet-average emission factor of 0.28 mg km1 veh1 is consistent with the estimation obtained using the receptor model.The results presented herein can be used to inform assessments of the environmental and health impacts of BWPs to formulate effective emissions control policies.
基金Acknowledgements We have profited from discussions with Dr. Franz Rohrer. We acknowledge financial support from the National Natural Science Foundation of China (Grant Nos. 91544225 and 41375124), the Strategic Priority Research Program of the Chinese Academy of Sciences (No. XDB05010500), and the special fund of the State Key Joint Laboratory of Environment Simulation and Pollution Control (13Z02ESPCP).
文摘The photolysis frequency of NO2, j(NO2), is an important analytical parameter in the study of tropospheric chemistry. A chemical actinometer (CA) was built to measure the ambient j(NQ) based on a high precision NOx instrument with 1 min time resolution. Parallel measurements of the ambient j(NO2) by using the CA and a commercial spectroradiometer (SR) were conducted at a typical urban site (Peking University Urban Environmental Monitoring Station) in Beijing. In general, good agreement was achieved between the CA and SR data with a high linear correlation coefficient (R2 = 0.977) and a regression slope of 1.12. The regression offset was negligible compared to the measured signal level. Thej(NO2) data were calculated using the tropospheric ultraviolet visible radiation (TUV) model, which was constrained to observe aerosol optical properties. The calculated j(NO2) was intermediate between the results obtained with CA and SR, demonstrating the consistency of all the parameters observed at this site. The good agreement between the CA and SR data, and the consistency with the TUV model results, demonstrate the good performance of the installed SR instrument. Since a drift of the SR sensitivity is expected by the manufacturer, we propose a regular check of the data acquired via SR against those obtained by CA for long-term delivery of a high quality series ofj(NO2) data. Establishing such a time series will be invaluable for analyzing the long-term atmospheric oxidation capacity trends as well as O3 pollution for urban Beijing.
基金supported by the National Key Basic Research and Development Program (No. 2013CB228500)the National Basic Research Program (973) of China (Nos. 2013CB228503, 2013CB228502)+3 种基金National Natural Science Foundation of China (Nos. 91544214, 51636003)the Strategic Priority Research Program of Chinese Academy of Sciences (No. XDB05010500)China Postdoctoral Science Foundation (No. 2015M580929)the State Key Lab of Automotive Safety and Energy at Tsinghua University for their support for the experiments
文摘Light-duty gasoline vehicles have drawn public attention in China due to their significant primary emissions of particulate matter and volatile organic compounds(VOCs). However,little information on secondary aerosol formation from exhaust for Chinese vehicles and fuel conditions is available. In this study, chamber experiments were conducted to quantify the potential of secondary aerosol formation from the exhaust of a port fuel injection gasoline engine. The engine and fuel used are common in the Chinese market, and the fuel satisfies the China V gasoline fuel standard. Substantial secondary aerosol formation was observed during a 4–5 hr simulation, which was estimated to represent more than 10 days of equivalent atmospheric photo-oxidation in Beijing. As a consequence, the extreme case secondary organic aerosol(SOA) production was 426 ± 85 mg/kg-fuel, with high levels of precursors and OH exposure. The low hygroscopicity of the aerosols formed inside the chamber suggests that SOA was the dominant chemical composition. Fourteen percent of SOA measured in the chamber experiments could be explained through the oxidation of speciated single-ring aromatics. Unspeciated precursors, such as intermediate-volatility organic compounds and semi-volatile organic compounds, might be significant for SOA formation from gasoline VOCs. We concluded that reductions of emissions of aerosol precursor gases from vehicles are essential to mediate pollution in China.