Ethers are promising electrolyte solvents for secondary Li metal batteries because of their excellent reduction stability.However,their oxidation stability has been mostly relying on the high concentration approach,an...Ethers are promising electrolyte solvents for secondary Li metal batteries because of their excellent reduction stability.However,their oxidation stability has been mostly relying on the high concentration approach,and limited progress has been made on building effective interphase to protect the cathode from the corrosion of the electrolyte.In this work,we construct a semi-crystalline interfacial layer on the surface of Li(Ni_(0.8)Co_(0.1)Mn_(0.1))O_(2)cathode that can achieve improved electrochemical stability in the highly corrosive chemical environment formed by the decomposition of ether molecules.Different from traditional brittle crystalline interphases,the optimized semi-crystalline layer with low modulus and high ionic conductivity can effectively relieve electrode strain and maintain the integrity of the interface layer.Due to this design,the continuous oxidation decomposition of ether-based electrolytes could be significantly suppressed and the battery shows outstanding cycling stability(84%capacity retention after 300 cycles).This article provides a solution to address the oxidation instability issue of ether-based electrolytes.展开更多
We demonstrate an ultra-compact short-wave infrared[SWIR]multispectral detector chip by monolithically integrating the narrowband Fabry–Perot microcavities array with the In Ga As detector focal plane array.A 16-chan...We demonstrate an ultra-compact short-wave infrared[SWIR]multispectral detector chip by monolithically integrating the narrowband Fabry–Perot microcavities array with the In Ga As detector focal plane array.A 16-channel SWIR multispectral detector has been fabricated for demonstration.Sixteen different narrowband response spectra are acquired on a 64×64 pixels detector chip by four times combinatorial etching processes.The peak of the response spectra varies from1450 to 1666 nm with full width at half-maximum of 24 nm on average.The size of the SWIR multispectral detection system is remarkably reduced to a 2 mm^(2) detector chip.展开更多
Airborne pulse Doppler radar is a key threat to the military helicopter,and assessing the stealth performance of helicopter against airborne early warning radar is helpful to the helicopter’s stealth design and opera...Airborne pulse Doppler radar is a key threat to the military helicopter,and assessing the stealth performance of helicopter against airborne early warning radar is helpful to the helicopter’s stealth design and operational planning.In this paper,the Shooting and Bouncing Ray(SBR)and Uniform Theory of Diffraction(UTD)based high-frequency algorithms are used to calculate the Radar Cross Section(RCS)of helicopter,and the radar range equations are used to evaluate the stealth performance.In order to account for the effects of rotor flapping motions during actual flight,the aerodynamics model of whole helicopter is established and the attitudes and controls of helicopter at different flight states are trimmed and input into the RCS calculation module.The effects of helicopter flight speed,flying direction and operational environment on radar stealth performance are studied in focus.It is demonstrated by the results that the trimming control does have a great influence of more than 5 dB on the RCS of helicopter,and the introduction of the trim calculation brings the helicopter’s returns calculation closer to the reality.Variations in flight speed lead to the changes in the stealth performance of helicopter against Early Warning Aircraft(EWA),and the helicopter flight speed can be planned according to the operational requirements to minimize exposure distance or exposure time.Variations in flying direction mainly affect the detection properties of helicopter returns,and flying in the same direction with EWA usually gives the helicopter better low-observability than flying head-on.Variations in operational environment mainly affect the radar detection performance and the sensitivity of the detection performance to external factors;the same amount of change in some external factor causes a different amount of change in the helicopter’s detectability in different environments.展开更多
To achieve high-precision trajectory following during helicopter maneuver tasks and reduce the disruptive influences of unknown variabilities,this study introduces a cascaded-loop helicopter trajectory tracking contro...To achieve high-precision trajectory following during helicopter maneuver tasks and reduce the disruptive influences of unknown variabilities,this study introduces a cascaded-loop helicopter trajectory tracking controller,whose parameters are set using an Ant Colony OptimizationSlime Mould Algorithm(ACO-SMA).Initially,a nonlinear flight dynamics model of the helicopter is constructed.Observer gain functions and nonlinear feedback from a vibrational suppression function to improve the tracking performance of the controller,addressing issues in disturbance estimation and compensation of the Active Disturbance Rejection Control(ADRC).Simultaneously,a cascaded loop system,comprising an internal attitude loop and an external position loop,is created,and the ant colony-slime mold hybrid algorithm optimizes the system parameters of the trajectory tracking controller.Finally,helicopter trajectory tracking simulation experiments are conducted,including spiral ascending and“8”shape climbing maneuvers.The findings indicate that the ADRC employed for helicopter trajectory tracking exhibits outstanding performance in rejecting disturbances caused by gusts and accurately tracking trajectories.The trajectory tracking controller,whose parameters are optimized by the ACO-SMA,shows higher tracking precision compared to the conventional PID and ADRC,thereby substantially improving the precision of maneuver tasks.展开更多
Rechargeable aqueous zinc batteries(RAZBs)offer a promising solution for large-scale energy storage due to the abundance,low cost,and safety of Zn.However,practical applications are hindered by Zn anode instability,de...Rechargeable aqueous zinc batteries(RAZBs)offer a promising solution for large-scale energy storage due to the abundance,low cost,and safety of Zn.However,practical applications are hindered by Zn anode instability,dendrite growth,and hydrogen evolution reactions(HER).Chaotropic Zn(ClO_(4))2 electrolytes are favorable for low-temperature operations but exacerbate these issues due to their high acidity,leading to severe Zn corrosion and layered double hydroxide formation.We propose a biomimetic strategy using methylguanidoacetic acid(creatine)as a low-cost,eco-friendly additive to address these challenges.Creatine acts as a proton pocket to finely tune the pH of acidic Zn(ClO_(4))2 electrolytes for suppressing HER and stabilizing the Zn anode.Furthermore,the formed creatinine cations adsorb on the Zn surface,promoting highly controlled Zn deposition with a preferred(002)orientation.This approach significantly enhances battery cycling performance,with Zn||Zn cells demonstrating extended cycling stability at both low and high current densities.Zn||Cu cells exhibited improved Coulombic efficiency over thousands of cycles,indicating highly reversible Zn plating/stripping.Notably,stable cell operations were realized at the temperature as low as−35℃ without electrolyte freezing.Our findings highlight the potential of biomimetic proton regulation and interfacial modulation for improving the stability and reversibility of Zn plating/stripping in RAZBs.展开更多
基金supported by the National Natural Science Foundation of China(22179124,21905265)the Fundamental Research Funds for the Central Universities(WK3430000007)。
文摘Ethers are promising electrolyte solvents for secondary Li metal batteries because of their excellent reduction stability.However,their oxidation stability has been mostly relying on the high concentration approach,and limited progress has been made on building effective interphase to protect the cathode from the corrosion of the electrolyte.In this work,we construct a semi-crystalline interfacial layer on the surface of Li(Ni_(0.8)Co_(0.1)Mn_(0.1))O_(2)cathode that can achieve improved electrochemical stability in the highly corrosive chemical environment formed by the decomposition of ether molecules.Different from traditional brittle crystalline interphases,the optimized semi-crystalline layer with low modulus and high ionic conductivity can effectively relieve electrode strain and maintain the integrity of the interface layer.Due to this design,the continuous oxidation decomposition of ether-based electrolytes could be significantly suppressed and the battery shows outstanding cycling stability(84%capacity retention after 300 cycles).This article provides a solution to address the oxidation instability issue of ether-based electrolytes.
基金supported by the National Natural Science Foundation of China(NSFC)(No.11874376)Shanghai Science and Technology Foundations(Nos.19DZ2293400 and 19ZR1465900)+1 种基金Shanghai Municipal Science and Technology Major Project(No.2019SHZDZX01)Chinese Academy of Sciences President’s International Fellowship Initiative(No.2021PT0007)。
文摘We demonstrate an ultra-compact short-wave infrared[SWIR]multispectral detector chip by monolithically integrating the narrowband Fabry–Perot microcavities array with the In Ga As detector focal plane array.A 16-channel SWIR multispectral detector has been fabricated for demonstration.Sixteen different narrowband response spectra are acquired on a 64×64 pixels detector chip by four times combinatorial etching processes.The peak of the response spectra varies from1450 to 1666 nm with full width at half-maximum of 24 nm on average.The size of the SWIR multispectral detection system is remarkably reduced to a 2 mm^(2) detector chip.
基金supported by a project funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions,China(PAPD).
文摘Airborne pulse Doppler radar is a key threat to the military helicopter,and assessing the stealth performance of helicopter against airborne early warning radar is helpful to the helicopter’s stealth design and operational planning.In this paper,the Shooting and Bouncing Ray(SBR)and Uniform Theory of Diffraction(UTD)based high-frequency algorithms are used to calculate the Radar Cross Section(RCS)of helicopter,and the radar range equations are used to evaluate the stealth performance.In order to account for the effects of rotor flapping motions during actual flight,the aerodynamics model of whole helicopter is established and the attitudes and controls of helicopter at different flight states are trimmed and input into the RCS calculation module.The effects of helicopter flight speed,flying direction and operational environment on radar stealth performance are studied in focus.It is demonstrated by the results that the trimming control does have a great influence of more than 5 dB on the RCS of helicopter,and the introduction of the trim calculation brings the helicopter’s returns calculation closer to the reality.Variations in flight speed lead to the changes in the stealth performance of helicopter against Early Warning Aircraft(EWA),and the helicopter flight speed can be planned according to the operational requirements to minimize exposure distance or exposure time.Variations in flying direction mainly affect the detection properties of helicopter returns,and flying in the same direction with EWA usually gives the helicopter better low-observability than flying head-on.Variations in operational environment mainly affect the radar detection performance and the sensitivity of the detection performance to external factors;the same amount of change in some external factor causes a different amount of change in the helicopter’s detectability in different environments.
基金support of the National Natural Science Foundation of China(No.12032012)the Priority Academic Program Development of Jiangsu Higher Education Institutions,China。
文摘To achieve high-precision trajectory following during helicopter maneuver tasks and reduce the disruptive influences of unknown variabilities,this study introduces a cascaded-loop helicopter trajectory tracking controller,whose parameters are set using an Ant Colony OptimizationSlime Mould Algorithm(ACO-SMA).Initially,a nonlinear flight dynamics model of the helicopter is constructed.Observer gain functions and nonlinear feedback from a vibrational suppression function to improve the tracking performance of the controller,addressing issues in disturbance estimation and compensation of the Active Disturbance Rejection Control(ADRC).Simultaneously,a cascaded loop system,comprising an internal attitude loop and an external position loop,is created,and the ant colony-slime mold hybrid algorithm optimizes the system parameters of the trajectory tracking controller.Finally,helicopter trajectory tracking simulation experiments are conducted,including spiral ascending and“8”shape climbing maneuvers.The findings indicate that the ADRC employed for helicopter trajectory tracking exhibits outstanding performance in rejecting disturbances caused by gusts and accurately tracking trajectories.The trajectory tracking controller,whose parameters are optimized by the ACO-SMA,shows higher tracking precision compared to the conventional PID and ADRC,thereby substantially improving the precision of maneuver tasks.
基金supported by the National Key R&D Program of China(2021YFA1201800)the Fundamental Research Funds for the Central Universities(WK3430000007).
文摘Rechargeable aqueous zinc batteries(RAZBs)offer a promising solution for large-scale energy storage due to the abundance,low cost,and safety of Zn.However,practical applications are hindered by Zn anode instability,dendrite growth,and hydrogen evolution reactions(HER).Chaotropic Zn(ClO_(4))2 electrolytes are favorable for low-temperature operations but exacerbate these issues due to their high acidity,leading to severe Zn corrosion and layered double hydroxide formation.We propose a biomimetic strategy using methylguanidoacetic acid(creatine)as a low-cost,eco-friendly additive to address these challenges.Creatine acts as a proton pocket to finely tune the pH of acidic Zn(ClO_(4))2 electrolytes for suppressing HER and stabilizing the Zn anode.Furthermore,the formed creatinine cations adsorb on the Zn surface,promoting highly controlled Zn deposition with a preferred(002)orientation.This approach significantly enhances battery cycling performance,with Zn||Zn cells demonstrating extended cycling stability at both low and high current densities.Zn||Cu cells exhibited improved Coulombic efficiency over thousands of cycles,indicating highly reversible Zn plating/stripping.Notably,stable cell operations were realized at the temperature as low as−35℃ without electrolyte freezing.Our findings highlight the potential of biomimetic proton regulation and interfacial modulation for improving the stability and reversibility of Zn plating/stripping in RAZBs.