The integrated repair of bone and cartilage boasts advantages for osteochondral restoration such as a long-term repair effect and less deterioration compared to repairing cartilage alone.Constructing multifactorial,sp...The integrated repair of bone and cartilage boasts advantages for osteochondral restoration such as a long-term repair effect and less deterioration compared to repairing cartilage alone.Constructing multifactorial,spatially oriented scaffolds to stimulate osteochondral regeneration,has immense significance.Herein,targeted drugs,namely kartogenin@polydopamine(KGN@PDA)nanoparticles for cartilage repair and miRNA@calcium phosphate(miRNA@CaP)NPs for bone regeneration,were in situ deposited on a patterned supramolecular-assembled 2-ureido-4[lH]-pyrimidinone(UPy)modified gelation hydrogel film,facilitated by the dynamic and responsive coordination and complexation of metal ions and their ligands.This hydrogel film can be rolled into a cylindrical plug,mimicking the Haversian canal structure of natural bone.The resultant hydrogel demonstrates stable mechanical properties,a self-healing ability,a high capability for reactive oxygen species capture,and controlled release of KGN and miR-26a.In vitro,KGN@PDA and miRNA@CaP promote chondrogenic and osteogenic differentiation of mesenchymal stem cells via the JNK/RUNX1 and GSK-3β/β-catenin pathways,respectively.In vivo,the osteochondral plug exhibits optimal subchondral bone and cartilage regeneration,evidenced by a significant increase in glycosaminoglycan and collagen accumulation in specific zones,along with the successful integration of neocartilage with subchondral bone.This biomaterial delivery approach represents a significant toward improved osteochondral repair.展开更多
A new electrochemical sensor for organophosphate pesticide(methyl-paraoxon)detection based on bifunctional cerium oxide(CeO_(2))nanozyme is here reported for the first time.Methyl-paraoxon was degraded into p-nitrophe...A new electrochemical sensor for organophosphate pesticide(methyl-paraoxon)detection based on bifunctional cerium oxide(CeO_(2))nanozyme is here reported for the first time.Methyl-paraoxon was degraded into p-nitrophenol by using CeO_(2) with phosphatase mimicking activity.The CeO_(2) nanozymemodified electrode was then synthesized to detect p-nitrophenol.Cyclic voltammetry was applied to investigate the electrochemical behavior of the modified electrode,which indicates that the signal enhancement effect may attribute to the coating of CeO_(2) nanozyme.The current research also studied and discussed the main parameters affecting the analytical signal,including accumulation potential,accumulation time,and pH.Under the optimum conditions,the present method provided a wider linear range from 0.1 to 100 mmol/L for methyl-paraoxon with a detection limit of 0.06 mmol/L.To validate the proof of concept,the electrochemical sensor was then successfully applied for the determination of methyl-paraoxon in three herb samples,i.e.,Coix lacryma-jobi,Adenophora stricta and Semen nelumbinis.Our findings may provide new insights into the application of bifunctional nanozyme in electrochemical detection of organophosphorus pesticide.展开更多
基金the Natural Science Foundation of China(Grant Nos.82072413,82101649)National Key Research and Development Program of China(Grant Nos.2021YFE0105400).
文摘The integrated repair of bone and cartilage boasts advantages for osteochondral restoration such as a long-term repair effect and less deterioration compared to repairing cartilage alone.Constructing multifactorial,spatially oriented scaffolds to stimulate osteochondral regeneration,has immense significance.Herein,targeted drugs,namely kartogenin@polydopamine(KGN@PDA)nanoparticles for cartilage repair and miRNA@calcium phosphate(miRNA@CaP)NPs for bone regeneration,were in situ deposited on a patterned supramolecular-assembled 2-ureido-4[lH]-pyrimidinone(UPy)modified gelation hydrogel film,facilitated by the dynamic and responsive coordination and complexation of metal ions and their ligands.This hydrogel film can be rolled into a cylindrical plug,mimicking the Haversian canal structure of natural bone.The resultant hydrogel demonstrates stable mechanical properties,a self-healing ability,a high capability for reactive oxygen species capture,and controlled release of KGN and miR-26a.In vitro,KGN@PDA and miRNA@CaP promote chondrogenic and osteogenic differentiation of mesenchymal stem cells via the JNK/RUNX1 and GSK-3β/β-catenin pathways,respectively.In vivo,the osteochondral plug exhibits optimal subchondral bone and cartilage regeneration,evidenced by a significant increase in glycosaminoglycan and collagen accumulation in specific zones,along with the successful integration of neocartilage with subchondral bone.This biomaterial delivery approach represents a significant toward improved osteochondral repair.
基金This work was supported by Macao Science and Technology Development Fund(Grant No.:0147/2019/A3)Guangxi Innovation-driven Development Special Foundation Project(Project No.:GuiKe AA18118049)+1 种基金China Postdoctoral Science Foundation(Grant No.:2019M653299)the National Natural Science Foundation of China(Grant No.:81903794).
文摘A new electrochemical sensor for organophosphate pesticide(methyl-paraoxon)detection based on bifunctional cerium oxide(CeO_(2))nanozyme is here reported for the first time.Methyl-paraoxon was degraded into p-nitrophenol by using CeO_(2) with phosphatase mimicking activity.The CeO_(2) nanozymemodified electrode was then synthesized to detect p-nitrophenol.Cyclic voltammetry was applied to investigate the electrochemical behavior of the modified electrode,which indicates that the signal enhancement effect may attribute to the coating of CeO_(2) nanozyme.The current research also studied and discussed the main parameters affecting the analytical signal,including accumulation potential,accumulation time,and pH.Under the optimum conditions,the present method provided a wider linear range from 0.1 to 100 mmol/L for methyl-paraoxon with a detection limit of 0.06 mmol/L.To validate the proof of concept,the electrochemical sensor was then successfully applied for the determination of methyl-paraoxon in three herb samples,i.e.,Coix lacryma-jobi,Adenophora stricta and Semen nelumbinis.Our findings may provide new insights into the application of bifunctional nanozyme in electrochemical detection of organophosphorus pesticide.