期刊文献+
共找到6篇文章
< 1 >
每页显示 20 50 100
The dynamic catalysis of Ga/ZSM-5 catalysts for propane-CO_(2) coupling conversion to aromatics and syngas
1
作者 Yonggui Song zhong-pan hu +12 位作者 Haohao Feng Enze Chen Le Lv Yimo Wu Zhen Liu Yong Jiang Xiaozhi Su Feifei Xu Mingchang Zhu Jingfeng Han Yingxu Wei Svetlana Mintova Zhongmin Liu 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2024年第10期513-519,I0011,共8页
Alkane coupling with CO_(2) by metal-containing zeolites catalysis is found to be a promising way to produce aromatics and syngas in recent years,but the real active sites and the role of CO_(2) are still unclear owin... Alkane coupling with CO_(2) by metal-containing zeolites catalysis is found to be a promising way to produce aromatics and syngas in recent years,but the real active sites and the role of CO_(2) are still unclear owing to the quick evolution of the metallic active sites and the complex reaction processes including direct propane aromatization,CO_(2) hydrogenation,reverse water-gas shift reaction,and propane-CO_(2) coupling aromatization.Herein,Ga/ZSM-5 catalysts were constructed to study the dynamic evolution of the metallic active sites and the role of CO_(2) during the propane and CO_(2) coupling reaction.After optimizing the reaction conditions,a notable propane conversion rate of 97.9%and an impressive aromatics selectivity of 80.6%in hydrocarbons can be achieved at the conditions of 550℃and CO_(2)/C_(3)H_(8) of 4.^(13)CO_(2)isotope experiments illustrate that C-atoms of CO_(2) can enter into CO(86.5%)and aromatics(10.8%)during the propane-CO_(2) coupling reaction process.In situ XANES and FTIR spectroscopies at 550℃and H_(2)/C_(3)H_(8) atmosphere reveal that GaO_(x) species can be gradually dispersed into[GaH_(2)]^(+)/[GaH]^(2+)on the Bronsted acid sites of ZSM-5 zeolite during H_(2) and/or C_(3)H_(8) treatment,which are the real active sites for propane-CO_(2) coupling conversion.In situ CO_(2)-FTIR experiments demonstrate that the[GaH_(2)]^(+)/[GaH]^(2+)species can react with CO_(2) and accelerate the propane and CO_(2) coupling process.This work not only presents a cost-effective avenue for CO_(2) utilization,but also contributes to the active site design for improved alkane and CO_(2) activation in coupling reaction system. 展开更多
关键词 Carbon dioxide Propane aromatization Ga/ZSM-5 Gallium hydride Spectroscopy
在线阅读 下载PDF
State-of-the-art catalysts for direct dehydrogenation of propane to propylene 被引量:33
2
作者 zhong-pan hu Dandan Yang +1 位作者 Zheng Wang Zhong-Yong Yuan 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第9期1233-1254,共22页
With growing demand for propylene and increasing production of propane from shale gas,the technologies of propylene production,including direct dehydrogenation and oxidative dehydrogenation of propane,have drawn great... With growing demand for propylene and increasing production of propane from shale gas,the technologies of propylene production,including direct dehydrogenation and oxidative dehydrogenation of propane,have drawn great attention in recent years.In particular,direct dehydrogenation of propane to propylene is regarded as one of the most promising methods of propylene production because it is an on-purpose technique that exclusively yields propylene instead of a mixture of products.In this critical review,we provide the current investigations on the heterogeneous catalysts(such as Pt,CrOx,VOx,GaOx-based catalysts,and nanocarbons)used in the direct dehydrogenation of propane to propylene.A detailed comparison and discussion of the active sites,catalytic mechanisms,influencing factors(such as the structures,dispersions,and reducibilities of the catalysts and promoters),and supports for different types of catalysts is presented.Furthermore,rational designs and preparation of high-performance catalysts for propane dehydrogenation are proposed and discussed. 展开更多
关键词 Propane dehydrogenation PROPYLENE Heterogeneous catalyst Active site Catalytic mechanism
在线阅读 下载PDF
Mesoporous carbons as metal-free catalysts for propane dehydrogenation: Effect of the pore structure and surface property 被引量:8
3
作者 zhong-pan hu Jin-Tao Ren +2 位作者 Dandan Yang Zheng Wang Zhong-Yong Yuan 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第9期1385-1394,共10页
Nanocarbon materials have been used as important metal-free catalysts for various reactions including alkane dehydrogenation.However,clarifying the active sites and tuning the nanocarbon structure for direct dehydroge... Nanocarbon materials have been used as important metal-free catalysts for various reactions including alkane dehydrogenation.However,clarifying the active sites and tuning the nanocarbon structure for direct dehydrogenation have always been significantly challenging owing to the lack of fundamental understanding of the structure and surface properties of carbon materials.Herein,mesoporous carbon materials with different pore ordering and surface properties were synthesized through a soft-templating method with different formaldehyde/resorcinol ratios and carbonization temperatures and used for catalytic dehydrogenation of propane to propylene.The highly ordered mesoporous carbons were found to have higher catalytic activities than disordered and ordered mesoporous carbons,mainly because the highly ordered mesopores favor mass transportation and provide more accessible active sites.Furthermore,mesoporous carbons can provide a large amount of surface active sites owing to their high surface areas,which is favorable for propane dehydrogenation reaction.To control the surface oxygenated functional groups,highly ordered mesoporous carbons were carbonized at different temperatures(600,700,and 800℃).The propylene formation rates exhibit an excellent linear relationship with the number of ketonic C=O groups,suggesting that C=O groups are the most possible active sites. 展开更多
关键词 Mesoporous carbons PROPANE DEHYDROGENATION PROPYLENE Metal-free catalysis
在线阅读 下载PDF
P-doped mesoporous carbons for high-efficiency electrocatalytic oxygen reduction 被引量:8
4
作者 hui Zhao zhong-pan hu +2 位作者 Yun-Pei Zhu Li Ge Zhong-Yong Yuan 《Chinese Journal of Catalysis》 SCIE EI CAS CSCD 北大核心 2019年第9期1366-1374,共9页
Chemically modified carbonaceous materials have attained utmost attention in the fields of renewable energy storage and conversion,due to the controllable physicochemical properties,tailorable micro-/nanostructures,an... Chemically modified carbonaceous materials have attained utmost attention in the fields of renewable energy storage and conversion,due to the controllable physicochemical properties,tailorable micro-/nanostructures,and respectable stability.Herein,P-doped mesoporous carbons were synthesized by using F127 as the soft template,organophosphonic acid as the P source and phenolic resin as the carbon source.Small amounts of iron species were introduced to act as a graphitization catalyst.The synthesized carbons exhibit the well-defined wormhole-like pore structure featuring high specific surface area and homogenously doped P heteroatoms.Notably,introducing iron species during the synthesis process can optimize the textural properties and the degree of graphitization of carbon materials.The doping amount of P has an important effect on the porous structure and the defect degree,which correspondingly influence the active sites and the oxygen reduction reaction(ORR)activity.The resultant material presents superior catalytic activity for the ORR,together with remarkably enhanced durability and methanol tolerance in comparison with the commercial Platinum catalyst,demonstrating the possibility for its use in electrode materials and electronic nanodevices for metal-air batteries and fuel cells. 展开更多
关键词 P-DOPING Mesoporous carbons ELECTROCATALYST Oxygen reduction reaction
在线阅读 下载PDF
CrOx supported on high-silica HZSM-5 for propane dehydrogenation 被引量:3
5
作者 zhong-pan hu Yansu Wang +1 位作者 Dandan Yang Zhong-Yong Yuan 《Journal of Energy Chemistry》 SCIE EI CAS CSCD 2020年第8期225-233,I0008,共10页
Industrial propane dehydrogenation(PDH)catalysts generally suffer from low catalytic stability due to the coke formation onto the catalyst surface to cover the active sites.The exploitation of an efficient catalyst wi... Industrial propane dehydrogenation(PDH)catalysts generally suffer from low catalytic stability due to the coke formation onto the catalyst surface to cover the active sites.The exploitation of an efficient catalyst with both high catalytic selectivity and long-term stability toward PDH is of great importance but challenging to make.Herein CrOx supported on high-silica HZSM-5 with a SiO2/Al2O3 ratio of 260(Cr/Z-5(260)is synthesized by a simple wet impregnation method,which exhibits high catalytic activity,good selectivity and excellent stability for PDH.At a weight hourly space velocity(WHSV)of 0.59 h-1,a propylene formation rate of 4.1 mmol g-1cath-1(~32.6% propane conversion and ~94.2% propylene selectivity)can be maintained over the 5%Cr/Z-5(260)catalyst after 50 h time on stream,which is much better than commercial Cr/Al2O3(Catofin process,catalyst life is several hours)at the same reaction conditions.With increasing the WHSV to 5.9 h-1,a high propylene formation rate of 27.9 mmol gcat-1h-1can be obtained over the 5%Cr/Z-5(260)catalyst after 50 h time on stream,demonstrating a very promising PDH catalyst.Characterization results and Na+doping experiments reveal that the Cr species combined with Br?nsted acid sites in Cr/HZSM-5 catalysts are responsible for the high catalytic performance.In particular,the Br?nsted acid sites in HZSM-5 zeolite could increase the propane adsorption and enhance the C–H bond activation.Furthermore,the high surface area and well-defined pores of HZSM-5 zeolite can provide a special environment for the dispersion and stabilization of Cr species,thus guaranteeing high catalytic activity and stability. 展开更多
关键词 Propane dehydrogenation ZSM-5 zeolite Chromium oxide PROPYLENE BrΦnsted acid sites
在线阅读 下载PDF
Enhancing the aromatic selectivity of cyclohexane aromatization by CO_(2)coupling 被引量:2
6
作者 Xiangxiang Ren zhong-pan hu +2 位作者 Jingfeng Han Yingxu Wei Zhongmin Liu 《Frontiers of Chemical Science and Engineering》 SCIE EI CSCD 2023年第11期1801-1808,共8页
Improving the aromatic selectivity in the alkane aromatization process is of great importance for its practical utilization but challenge to make because the high H/C ratio of alkanes would lead to a serious hydrogen ... Improving the aromatic selectivity in the alkane aromatization process is of great importance for its practical utilization but challenge to make because the high H/C ratio of alkanes would lead to a serious hydrogen transfer process and a large amount of light alkanes.Herein,CO_(2)is introduced into the cyclohexane conversion process on the HZSM-5 zeolite,which can improve the aromatic selectivity.By optimizing the reaction conditions,an improved aromatic(benzene,toluene,xylene,and C9+)selectivity of 48.2%can be obtained at the conditions of 2.7 MPa(CO_(2)),450℃,and 1.7 h^(−1),which is better than that without CO_(2)(aromatic selectivity=43.2%).In situ transmission Fourier transform infrared spectroscopy spectra illustrate that many oxygenated chemical intermediates(e.g.,carboxylic acid,anhydride,unsaturated aldehydes/ketones or ketene)would be formed during the cyclohexane conversion process in the presence of CO_(2).13C isotope labeling experimental results demonstrate that CO_(2)can enter into the aromatics through the formation of oxygenated chemical intermediates and thereby improve the aromatic selectivity.This study may open a green,economic,and promising way to improve the aromatic selectivity for alkane aromatization process. 展开更多
关键词 AROMATICS carbon dioxide AROMATIZATION coupling reaction ZSM-5 zeolite
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部