Polarization holography is a newly researched field,that has gained traction with the development of tensor theory.It primarily focuses on the interaction between polarization waves and photosensitive materials.The ex...Polarization holography is a newly researched field,that has gained traction with the development of tensor theory.It primarily focuses on the interaction between polarization waves and photosensitive materials.The extraordinary capabil-ities in modulating the amplitude,phase,and polarization of light have resulted in several new applications,such as holo-graphic storage technology,multichannel polarization multiplexing,vector beams,and optical functional devices.In this paper,fundamental research on polarization holography with linear polarized wave,a component of the theory of polariz-ation holography,has been reviewed.Primarily,the effect of various polarization changes on the linear and nonlinear po-larization characteristics of reconstructed wave under continuous exposure and during holographic recording and recon-struction have been focused upon.The polarization modulation realized using these polarization characteristics exhibits unusual functionalities,rendering polarization holography as an attractive research topic in many fields of applications.This paper aims to provide readers with new insights and broaden the application of polarization holography in more sci-entific and technological research fields.展开更多
Mesenchymal stem cells(MSCs)are promising seed cells for neural regeneration therapy owing to their plasticity and accessibility.They possess several inherent characteristics advantageous for the transplantation-based...Mesenchymal stem cells(MSCs)are promising seed cells for neural regeneration therapy owing to their plasticity and accessibility.They possess several inherent characteristics advantageous for the transplantation-based treatment of neurological disorders,including neural differentiation,immunosuppression,neurotrophy,and safety.However,the therapeutic efficacy of MSCs alone remains unsatisfactory in most cases.To improve some of their abilities,many studies have employed genetic engineering to transfer key genes into MSCs.Both viral and nonviral methods can be used to overexpress therapeutic proteins that complement the inherent properties.However,to date,different modes of gene transfer have specific drawbacks and advantages.In addition,MSCs can be functionalized through targeted gene modification to facilitate neural repair by promoting neural differentiation,enhancing neurotrophic and neuroprotective functions,and increasing survival and homing abilities.The methods of gene transfer and selection of delivered genes still need to be optimized for improved therapeutic and targeting efficacies while minimizing the loss of MSC function.In this review,we focus on gene transport technologies for engineering MSCs and the application of strategies for selecting optimal delivery genes.Further,we describe the prospects and challenges of their application in animal models of different neurological lesions to broaden treatment alternatives for neurological diseases.展开更多
基金supports from National Key R&D Program of China(2018YFA0701800)Project of Fujian Province Major Science and Technology(2020HZ01012).
文摘Polarization holography is a newly researched field,that has gained traction with the development of tensor theory.It primarily focuses on the interaction between polarization waves and photosensitive materials.The extraordinary capabil-ities in modulating the amplitude,phase,and polarization of light have resulted in several new applications,such as holo-graphic storage technology,multichannel polarization multiplexing,vector beams,and optical functional devices.In this paper,fundamental research on polarization holography with linear polarized wave,a component of the theory of polariz-ation holography,has been reviewed.Primarily,the effect of various polarization changes on the linear and nonlinear po-larization characteristics of reconstructed wave under continuous exposure and during holographic recording and recon-struction have been focused upon.The polarization modulation realized using these polarization characteristics exhibits unusual functionalities,rendering polarization holography as an attractive research topic in many fields of applications.This paper aims to provide readers with new insights and broaden the application of polarization holography in more sci-entific and technological research fields.
基金This work was supported by the National Natural Science Foundation of China(81871503 from Qingsong Ye)National Key R&D Program of China(2022YFC2504200 from Qingsong Ye)Key research and development project of Hubei Province and Chutian Researcher Project(X22020024 from Yan He).
文摘Mesenchymal stem cells(MSCs)are promising seed cells for neural regeneration therapy owing to their plasticity and accessibility.They possess several inherent characteristics advantageous for the transplantation-based treatment of neurological disorders,including neural differentiation,immunosuppression,neurotrophy,and safety.However,the therapeutic efficacy of MSCs alone remains unsatisfactory in most cases.To improve some of their abilities,many studies have employed genetic engineering to transfer key genes into MSCs.Both viral and nonviral methods can be used to overexpress therapeutic proteins that complement the inherent properties.However,to date,different modes of gene transfer have specific drawbacks and advantages.In addition,MSCs can be functionalized through targeted gene modification to facilitate neural repair by promoting neural differentiation,enhancing neurotrophic and neuroprotective functions,and increasing survival and homing abilities.The methods of gene transfer and selection of delivered genes still need to be optimized for improved therapeutic and targeting efficacies while minimizing the loss of MSC function.In this review,we focus on gene transport technologies for engineering MSCs and the application of strategies for selecting optimal delivery genes.Further,we describe the prospects and challenges of their application in animal models of different neurological lesions to broaden treatment alternatives for neurological diseases.