Al Si10Mg porous protective structure often produces different damage forms under compressive loading,and these damage modes affect its protective function.In order to well meet the service requirements,there is an ur...Al Si10Mg porous protective structure often produces different damage forms under compressive loading,and these damage modes affect its protective function.In order to well meet the service requirements,there is an urgent need to comprehensively understand the mechanical behavior and response mechanism of AlSi10Mg porous structures under compressive loading.In this paper,Al Si10Mg porous structures with three kinds of volume fractions are designed and optimized to meet the requirements of high-impact,strong-energy absorption,and lightweight characteristics.The mechanical behaviors of AlSi10Mg porous structures,including the stress-strain relationship,structural bearing state,deformation and damage modes,and energy absorption characteristics,were obtained through experimental studies at different loading rates.The damage pattern of the damage section indicates that AlSi10Mg porous structures have both ductile and brittle mechanical properties.Numerical simulation studies show that the AlSi10Mg porous structure undergoes shear damage due to relative misalignment along the diagonal cross-section,and the damage location is almost at 45°to the load direction,which is the most direct cause of its structural damage,revealing the damage mechanism of AlSi10Mg porous structures under the compressive load.The normalized energy absorption model constructed in the paper well interprets the energy absorption state of Al Si10Mg porous structures and gives the sensitive location of the structures,and the results of this paper provide important references for peers in structural design and optimization.展开更多
At present,power electronic transformers(PETs)have been widely used in power systems.With the increase of PET capacity to the megawatt level.the problem of increased losses need to be taken seriously.As an important i...At present,power electronic transformers(PETs)have been widely used in power systems.With the increase of PET capacity to the megawatt level.the problem of increased losses need to be taken seriously.As an important indicator of power electronic device designing,losses have always been the focus of attention.At present,the losses are generally measured through experiments,but it takes a lot of time and is difficult to quantitatively analyze the internal distribution of PET losses.To solve the above problems,this article first qualitatively analyzes the losses of power electronic devices and proposes a loss calculation method based on pure simulation.This method uses the Discrete State Event Driven(DSED)modeling method to solve the problem of slow simulation speed of large-capacity power electronic devices and uses a loss calculation method that considers the operating conditions of the device to improve the calculation accuracy.For the PET prototype in this article,a losses model of the PET is established.The comparison of experimental and simulation results verifies the feasibility of the losses model.Then the losses composition of PET was analyzed to provide reference opinions for actual operation.It can help pre-analyze the losses distribution of PET,thereby providing a potential method for improving system efficiency.展开更多
OBJECTIVE Recent studies have shown that hepsin, a type of transmembrane serine protease, is highly upregulated in prostate cancer, but, little is known about its role in progression and invasion of this cancer. We co...OBJECTIVE Recent studies have shown that hepsin, a type of transmembrane serine protease, is highly upregulated in prostate cancer, but, little is known about its role in progression and invasion of this cancer. We constructed a hepsin-expressing plasmid and transfected it into PC-3 cells to investigate the effect of the hepsin gene on the biological behavior of the PC-3 cells. METHODS Plasmid pHepsin-IRES2 was transfected into prostate cancer PC-3 cells using Fugene6, and the cells with stable hepsin expression were screened and selected with Zeocin (600 mg/L). The hepsin mRNA level was measured by real-time PCR and the growth curve of the PC-3-transfected cells assessed using MTT and BrdU assays. A Boyden chamber was used to examine the difference in invasion and metastases between transfected and non-transfected cells. RESULTS The hepsin mRNA level in pHepsin-IRES2 transfected -PC-3 cells was significantly higher than that found in the control PC -3 cells. While the growth curve of the hepsin gene transfected PC -3 cells showed that there was no significant effect on proliferation, the invasive ability of the pHepsin-IRES2 transfected PC-3 cells, as compared with control cells, was significantly increased (P<0.05). CONCLUSION The results suggest that even though hepsin has no effect on the proliferation of prostate cancer PC-3 cells, it does promote cellular invasion and metastasis.Therefore hepsin may have a role in the development of prostate cancer.展开更多
In analyzing the complex interaction between the wellbore and the reservoir formation,the hydromechanical properties of the region proximal to the wellbore,referred to as the“wellbore skin zone”,play a pivotal role ...In analyzing the complex interaction between the wellbore and the reservoir formation,the hydromechanical properties of the region proximal to the wellbore,referred to as the“wellbore skin zone”,play a pivotal role in determining flow dynamics and the resulting formation deformation.Existing models of the wellbore skin zone generally assume a constant permeability throughout,resulting in a sharp permeability discontinuity at the skin-reservoir interface.This paper introduces a model for a wellbore with a continuously graded skin zone of finite thickness within a poroelastic medium.Analytical solutions are derived using the Laplace transform method,addressing both positive and negative skin zones.Numerical results are presented to illustrate the effects of graded permeability/skin zone thickness on pore pressures and stresses around a wellbore.The results highlight a distinct divergence in stress and pore pressure fields when comparing wellbores with negative skin zones to those with positive skin zones or no skin at all.展开更多
Quantum circuit fidelity is a crucial metric for assessing the accuracy of quantum computation results and indicating the precision of quantum algorithm execution. The primary methods for assessing quantum circuit fid...Quantum circuit fidelity is a crucial metric for assessing the accuracy of quantum computation results and indicating the precision of quantum algorithm execution. The primary methods for assessing quantum circuit fidelity include direct fidelity estimation and mirror circuit fidelity estimation. The former is challenging to implement in practice, while the latter requires substantial classical computational resources and numerous experimental runs. In this paper, we propose a fidelity estimation method based on Layer Interleaved Randomized Benchmarking, which decomposes a complex quantum circuit into multiple sublayers. By independently evaluating the fidelity of each layer, one can comprehensively assess the performance of the entire quantum circuit. This layered evaluation strategy not only enhances accuracy but also effectively identifies and analyzes errors in specific quantum gates or qubits through independent layer evaluation. Simulation results demonstrate that the proposed method improves circuit fidelity by an average of 6.8% and 4.1% compared to Layer Randomized Benchmarking and Interleaved Randomized Benchmarking methods in a thermal relaxation noise environment, and by 40% compared to Layer RB in a bit-flip noise environment. Moreover, the method detects preset faulty quantum gates in circuits generated by the Munich Quantum Toolkit Benchmark, verifying the model’s validity and providing a new tool for faulty gate detection in quantum circuits.展开更多
Polarization and conduction losses are the two most crucial dielectric loss mechanisms for carbon-based composites,but their synergistic effects in different frequency bands need to be further revealed.More importantl...Polarization and conduction losses are the two most crucial dielectric loss mechanisms for carbon-based composites,but their synergistic effects in different frequency bands need to be further revealed.More importantly,for polarization and conduction losses,the strengthening of one party always comes at the expense of the other,which inevitably limits the overall performance of the absorbers.Herein,we have developed a composite of CNT and NiCo hybrid particles via a scalable wet chemical process and an-nealing method.Through the adjustment of the precursor and the annealing temperature,the conduction and polarization losses of the composite are optimized simultaneously.The optimized samples achieved the full absorption of the X and Ku bands under conditions of low filling rate and thin thickness.Further theoretical and experimental studies have revealed conduction loss and polarization loss laws at different frequency ranges.The synergistic effect of conductive loss and magnetic loss in the low-frequency region ensures that the sample exhibits high microwave dissipation performance.However,in the medium and high-frequency part,the magnetic loss can be almost ignored and the timely replenishment of polar-ization loss keeps the wave-absorbing performance at a high level.The excellent multi-band absorption characteristics make the as-obtained absorbers meet the needs of future applications.展开更多
Using diamine as anchoring group, the self-assembled monolayers(SAMs) based on oligo(phenyleneethynylene)s(OPEs) and cruciform OPEs with an extended tetrathiafulvalene(TTF)(OPE3 and OPE3-TTF)were successfull...Using diamine as anchoring group, the self-assembled monolayers(SAMs) based on oligo(phenyleneethynylene)s(OPEs) and cruciform OPEs with an extended tetrathiafulvalene(TTF)(OPE3 and OPE3-TTF)were successfully formed on the Au substrate. The Uniformity and stability of SAMs were confirmed through cyclic voltammetry(CV) and electrochemical reductive desorption. The investigation of transport properties of SAMs was achieved by conducting-probe atomic force microscopy(CP-AFM) with both Au and Pt tips. The results indicated that the conductance of OPE3-TTF was 17 and 46 times that of OPE3 for Au and Pt tips, respectively. Theoretical calculations are qualitatively consistent with the experimental results, suggesting that the diamine as anchoring group has a great potential in molecular electronics.展开更多
基金financially supported by the National Natural Science Foundation of China(Nos.12272356,12072326,and 12172337)the State Key Laboratory of Dynamic Measurement Technology,North University of China(No.2022-SYSJJ-03)。
文摘Al Si10Mg porous protective structure often produces different damage forms under compressive loading,and these damage modes affect its protective function.In order to well meet the service requirements,there is an urgent need to comprehensively understand the mechanical behavior and response mechanism of AlSi10Mg porous structures under compressive loading.In this paper,Al Si10Mg porous structures with three kinds of volume fractions are designed and optimized to meet the requirements of high-impact,strong-energy absorption,and lightweight characteristics.The mechanical behaviors of AlSi10Mg porous structures,including the stress-strain relationship,structural bearing state,deformation and damage modes,and energy absorption characteristics,were obtained through experimental studies at different loading rates.The damage pattern of the damage section indicates that AlSi10Mg porous structures have both ductile and brittle mechanical properties.Numerical simulation studies show that the AlSi10Mg porous structure undergoes shear damage due to relative misalignment along the diagonal cross-section,and the damage location is almost at 45°to the load direction,which is the most direct cause of its structural damage,revealing the damage mechanism of AlSi10Mg porous structures under the compressive load.The normalized energy absorption model constructed in the paper well interprets the energy absorption state of Al Si10Mg porous structures and gives the sensitive location of the structures,and the results of this paper provide important references for peers in structural design and optimization.
基金the National Key Research and Development Program of China(2017YFB0903200).
文摘At present,power electronic transformers(PETs)have been widely used in power systems.With the increase of PET capacity to the megawatt level.the problem of increased losses need to be taken seriously.As an important indicator of power electronic device designing,losses have always been the focus of attention.At present,the losses are generally measured through experiments,but it takes a lot of time and is difficult to quantitatively analyze the internal distribution of PET losses.To solve the above problems,this article first qualitatively analyzes the losses of power electronic devices and proposes a loss calculation method based on pure simulation.This method uses the Discrete State Event Driven(DSED)modeling method to solve the problem of slow simulation speed of large-capacity power electronic devices and uses a loss calculation method that considers the operating conditions of the device to improve the calculation accuracy.For the PET prototype in this article,a losses model of the PET is established.The comparison of experimental and simulation results verifies the feasibility of the losses model.Then the losses composition of PET was analyzed to provide reference opinions for actual operation.It can help pre-analyze the losses distribution of PET,thereby providing a potential method for improving system efficiency.
文摘OBJECTIVE Recent studies have shown that hepsin, a type of transmembrane serine protease, is highly upregulated in prostate cancer, but, little is known about its role in progression and invasion of this cancer. We constructed a hepsin-expressing plasmid and transfected it into PC-3 cells to investigate the effect of the hepsin gene on the biological behavior of the PC-3 cells. METHODS Plasmid pHepsin-IRES2 was transfected into prostate cancer PC-3 cells using Fugene6, and the cells with stable hepsin expression were screened and selected with Zeocin (600 mg/L). The hepsin mRNA level was measured by real-time PCR and the growth curve of the PC-3-transfected cells assessed using MTT and BrdU assays. A Boyden chamber was used to examine the difference in invasion and metastases between transfected and non-transfected cells. RESULTS The hepsin mRNA level in pHepsin-IRES2 transfected -PC-3 cells was significantly higher than that found in the control PC -3 cells. While the growth curve of the hepsin gene transfected PC -3 cells showed that there was no significant effect on proliferation, the invasive ability of the pHepsin-IRES2 transfected PC-3 cells, as compared with control cells, was significantly increased (P<0.05). CONCLUSION The results suggest that even though hepsin has no effect on the proliferation of prostate cancer PC-3 cells, it does promote cellular invasion and metastasis.Therefore hepsin may have a role in the development of prostate cancer.
基金the financial support from Shaanxi Key Research and Development Program under Grant No.2023-YBGY-058the Fundamental Research Funds for the Central Universities under Grant No.G2020KY05312.
文摘In analyzing the complex interaction between the wellbore and the reservoir formation,the hydromechanical properties of the region proximal to the wellbore,referred to as the“wellbore skin zone”,play a pivotal role in determining flow dynamics and the resulting formation deformation.Existing models of the wellbore skin zone generally assume a constant permeability throughout,resulting in a sharp permeability discontinuity at the skin-reservoir interface.This paper introduces a model for a wellbore with a continuously graded skin zone of finite thickness within a poroelastic medium.Analytical solutions are derived using the Laplace transform method,addressing both positive and negative skin zones.Numerical results are presented to illustrate the effects of graded permeability/skin zone thickness on pore pressures and stresses around a wellbore.The results highlight a distinct divergence in stress and pore pressure fields when comparing wellbores with negative skin zones to those with positive skin zones or no skin at all.
文摘Quantum circuit fidelity is a crucial metric for assessing the accuracy of quantum computation results and indicating the precision of quantum algorithm execution. The primary methods for assessing quantum circuit fidelity include direct fidelity estimation and mirror circuit fidelity estimation. The former is challenging to implement in practice, while the latter requires substantial classical computational resources and numerous experimental runs. In this paper, we propose a fidelity estimation method based on Layer Interleaved Randomized Benchmarking, which decomposes a complex quantum circuit into multiple sublayers. By independently evaluating the fidelity of each layer, one can comprehensively assess the performance of the entire quantum circuit. This layered evaluation strategy not only enhances accuracy but also effectively identifies and analyzes errors in specific quantum gates or qubits through independent layer evaluation. Simulation results demonstrate that the proposed method improves circuit fidelity by an average of 6.8% and 4.1% compared to Layer Randomized Benchmarking and Interleaved Randomized Benchmarking methods in a thermal relaxation noise environment, and by 40% compared to Layer RB in a bit-flip noise environment. Moreover, the method detects preset faulty quantum gates in circuits generated by the Munich Quantum Toolkit Benchmark, verifying the model’s validity and providing a new tool for faulty gate detection in quantum circuits.
基金This work was financially supported by the Natural Science Foundation of Sichuan Province(No.2023NSFSC0435)National Natural Science Foundation of China(No.52272288)+2 种基金Science and Technology Innovation Cultivation Project of Department of Science and Technology of Sichuan Province(Grant No.2021JDRC0091)the Key R&D project of Department of Science and Technology of Sichuan province(Grant No.2020YFN0025)Sichuan Agricul-tural University double support(No.035-2221993150).The authors also acknowledge the assistance of DUT Instrumental Analysis Center and Nanjing XFNANO Materials Tech Co.,Ltd.We also thank Xinnan Wang at School of Chemical Engineering of Dalian Univer-sity of Technology for help with the SEM data analysis.
文摘Polarization and conduction losses are the two most crucial dielectric loss mechanisms for carbon-based composites,but their synergistic effects in different frequency bands need to be further revealed.More importantly,for polarization and conduction losses,the strengthening of one party always comes at the expense of the other,which inevitably limits the overall performance of the absorbers.Herein,we have developed a composite of CNT and NiCo hybrid particles via a scalable wet chemical process and an-nealing method.Through the adjustment of the precursor and the annealing temperature,the conduction and polarization losses of the composite are optimized simultaneously.The optimized samples achieved the full absorption of the X and Ku bands under conditions of low filling rate and thin thickness.Further theoretical and experimental studies have revealed conduction loss and polarization loss laws at different frequency ranges.The synergistic effect of conductive loss and magnetic loss in the low-frequency region ensures that the sample exhibits high microwave dissipation performance.However,in the medium and high-frequency part,the magnetic loss can be almost ignored and the timely replenishment of polar-ization loss keeps the wave-absorbing performance at a high level.The excellent multi-band absorption characteristics make the as-obtained absorbers meet the needs of future applications.
基金financially supported by the National Natural Science Foundation of China (Nos. 61571415, 61622406, 51502283)the National Key Research and Development Program of China (Nos. 2017YFA0207500, 2016YFB0700700)the "Hundred Talents Program" of Chinese Academy of Sciences (CAS)
文摘Using diamine as anchoring group, the self-assembled monolayers(SAMs) based on oligo(phenyleneethynylene)s(OPEs) and cruciform OPEs with an extended tetrathiafulvalene(TTF)(OPE3 and OPE3-TTF)were successfully formed on the Au substrate. The Uniformity and stability of SAMs were confirmed through cyclic voltammetry(CV) and electrochemical reductive desorption. The investigation of transport properties of SAMs was achieved by conducting-probe atomic force microscopy(CP-AFM) with both Au and Pt tips. The results indicated that the conductance of OPE3-TTF was 17 and 46 times that of OPE3 for Au and Pt tips, respectively. Theoretical calculations are qualitatively consistent with the experimental results, suggesting that the diamine as anchoring group has a great potential in molecular electronics.