We demonstrate the in situ growth of ultra-thin InA s nanowires with an epitaxial Al film by molecular-beam epitaxy.Our InAs nanowire diameter(~30 nm)is much thinner than before(~100 nm).The ultra-thin InAs nanowires ...We demonstrate the in situ growth of ultra-thin InA s nanowires with an epitaxial Al film by molecular-beam epitaxy.Our InAs nanowire diameter(~30 nm)is much thinner than before(~100 nm).The ultra-thin InAs nanowires are pure phase crystals for various different growth directions.Transmission electron microscopy confirms an atomically abrupt and uniform interface between the Al shell and the InAs wire.Quantum transport study on these devices resolves a hard induced superconducting gap and 2 e-periodic Coulomb blockade at zero magnetic field,a necessary step for future Majorana experiments.By reducing wire diameter,our work presents a promising route for reaching fewer sub-band regime in Major ana nanowire devices.展开更多
We study a gate-tunable superconducting qubit(gatemon) based on a thin InAs-Al hybrid nanowire.Using a gate voltage to control its Josephson energy,the gatemon can reach the strong coupling regime to a microwave cavit...We study a gate-tunable superconducting qubit(gatemon) based on a thin InAs-Al hybrid nanowire.Using a gate voltage to control its Josephson energy,the gatemon can reach the strong coupling regime to a microwave cavity.In the dispersive regime,we extract the energy relaxation time T_(1)~0.56 μs and the dephasing time T_(2)^(*)~0.38 μs.Since thin In As-Al nanowires can have fewer or single sub-band occupation and recent transport experiment shows the existence of nearly quantized zero-bias conductance peaks,our result holds relevancy for detecting Majorana zero modes in thin InAs-Al nanowires using circuit quantum electrodynamics.展开更多
The preparation of medium-sized benzo[b]azocines has always been challenging because of inherently unfavorable enthalpy and entropy factors.This report presents a novel approach for accessing 8-membered seleno-benzo[b...The preparation of medium-sized benzo[b]azocines has always been challenging because of inherently unfavorable enthalpy and entropy factors.This report presents a novel approach for accessing 8-membered seleno-benzo[b]azocines via electrochemically-driven seleno-cyclization.This method enables room-temperature preparation of various structurally diverse medium-sized seleno-benzo[b]azocines.The facile deselenation of the seleno-cyclization products to generate functionalized dienes is an additional benefit of this indispensable reaction.Mechanistic insights are presented based on radical inhibition experiments and cyclic voltammetry measurements,which elucidate the radical pathway.Finally,density functional theory calculations further rationalize the rate-determining step and the unique chemoselectivity observed in this transformation.展开更多
The XCF_(3)groups(X=O,S,Se)play an increasingly important role in modern organic chemistry due to their unique electronegativity,lipophilic nature,metabolic stability,and bioavailability.Heterocyclic compounds are imp...The XCF_(3)groups(X=O,S,Se)play an increasingly important role in modern organic chemistry due to their unique electronegativity,lipophilic nature,metabolic stability,and bioavailability.Heterocyclic compounds are important scaffolds in many bioactive compounds and drugs.The incorporation of XCF_(3)groups into heterocyclic compounds can change their physicochemical and biological properties,which injects new vitality into the application of heterocyclic compounds in many fields such as organic chemistry,the pharmaceutical chemistry,and life sciences.In this paper,the recent progress in the synthesis of F_(3)CX-containing heterocycles is reviewed,and the application scope and mechanism of some reactions are discussed.展开更多
基金supported by the National Natural Science Foundation of China(Grant Nos.92065106,61974138,12104053,and 11704364)the Beijing Natural Science Foundation(Grant No.1192017)+2 种基金Tsinghua University Initiative Scientifc Research Programthe support from Youth Innovation Promotion Association,Chinese Academy of Sciences(Grant No.Y2021043)China Postdoctoral Science Foundation(Grant Nos.2020M670173 and 2020T130058)。
文摘We demonstrate the in situ growth of ultra-thin InA s nanowires with an epitaxial Al film by molecular-beam epitaxy.Our InAs nanowire diameter(~30 nm)is much thinner than before(~100 nm).The ultra-thin InAs nanowires are pure phase crystals for various different growth directions.Transmission electron microscopy confirms an atomically abrupt and uniform interface between the Al shell and the InAs wire.Quantum transport study on these devices resolves a hard induced superconducting gap and 2 e-periodic Coulomb blockade at zero magnetic field,a necessary step for future Majorana experiments.By reducing wire diameter,our work presents a promising route for reaching fewer sub-band regime in Major ana nanowire devices.
基金supported by the Tsinghua University Initiative Scientific Research Programthe Alibaba Innovative Research Program+1 种基金the National Natural Science Foundation of China (Grant Nos.12204047,92065106,and 61974138)the support from Youth Innovation Promotion Association,Chinese Academy of Sciences (Grant Nos.2017156 and Y2021043)。
文摘We study a gate-tunable superconducting qubit(gatemon) based on a thin InAs-Al hybrid nanowire.Using a gate voltage to control its Josephson energy,the gatemon can reach the strong coupling regime to a microwave cavity.In the dispersive regime,we extract the energy relaxation time T_(1)~0.56 μs and the dephasing time T_(2)^(*)~0.38 μs.Since thin In As-Al nanowires can have fewer or single sub-band occupation and recent transport experiment shows the existence of nearly quantized zero-bias conductance peaks,our result holds relevancy for detecting Majorana zero modes in thin InAs-Al nanowires using circuit quantum electrodynamics.
基金supported by the National Natural Science Foundation of China(No.21801007)Qingchuang Technology Support Program of University in Shandong Province(No.2021KJ066)S.-F.Ni acknowledges funding from the STU Scientific Research Foundation for Talents(No.NTF20022).
文摘The preparation of medium-sized benzo[b]azocines has always been challenging because of inherently unfavorable enthalpy and entropy factors.This report presents a novel approach for accessing 8-membered seleno-benzo[b]azocines via electrochemically-driven seleno-cyclization.This method enables room-temperature preparation of various structurally diverse medium-sized seleno-benzo[b]azocines.The facile deselenation of the seleno-cyclization products to generate functionalized dienes is an additional benefit of this indispensable reaction.Mechanistic insights are presented based on radical inhibition experiments and cyclic voltammetry measurements,which elucidate the radical pathway.Finally,density functional theory calculations further rationalize the rate-determining step and the unique chemoselectivity observed in this transformation.
基金supported by the National Natural Science Foundation of China(No.21801007)。
文摘The XCF_(3)groups(X=O,S,Se)play an increasingly important role in modern organic chemistry due to their unique electronegativity,lipophilic nature,metabolic stability,and bioavailability.Heterocyclic compounds are important scaffolds in many bioactive compounds and drugs.The incorporation of XCF_(3)groups into heterocyclic compounds can change their physicochemical and biological properties,which injects new vitality into the application of heterocyclic compounds in many fields such as organic chemistry,the pharmaceutical chemistry,and life sciences.In this paper,the recent progress in the synthesis of F_(3)CX-containing heterocycles is reviewed,and the application scope and mechanism of some reactions are discussed.