Track reconstruction algorithms are critical for polarization measurements.Convolutional neural networks(CNNs)are a promising alternative to traditional moment-based track reconstruction approaches.However,the hexagon...Track reconstruction algorithms are critical for polarization measurements.Convolutional neural networks(CNNs)are a promising alternative to traditional moment-based track reconstruction approaches.However,the hexagonal grid track images obtained using gas pixel detectors(GPDs)for better anisotropy do not match the classical rectangle-based CNN,and converting the track images from hexagonal to square results in a loss of information.We developed a new hexagonal CNN algorithm for track reconstruction and polarization estimation in X-ray polarimeters,which was used to extract the emission angles and absorption points from photoelectron track images and predict the uncer-tainty of the predicted emission angles.The simulated data from the PolarLight test were used to train and test the hexagonal CNN models.For individual energies,the hexagonal CNN algorithm produced 15%-30%improvements in the modulation factor compared to the moment analysis method for 100%polarized data,and its performance was comparable to that of the rectangle-based CNN algorithm that was recently developed by the Imaging X-ray Polarimetry Explorer team,but at a lower computational and storage cost for preprocessing.展开更多
A high-efficient one-step synthesis of cubic gauche polymeric nitrogen was developed just by thermal treatment of KN3powders.Raman and infrared spectra confirm the formation of cubic gauche polymeric nitrogen.Further ...A high-efficient one-step synthesis of cubic gauche polymeric nitrogen was developed just by thermal treatment of KN3powders.Raman and infrared spectra confirm the formation of cubic gauche polymeric nitrogen.Further thermogravimetric differential scanning calorimeter measurements show that the content of cubic gauche polymeric nitrogen is as high as 1.5 wt%with high thermal stability,which is the highest content value reported so far.展开更多
N6-methyladenosine(m6A)is an important RNA methylation modification involved in regulating diverse biological processes across multiple species.Hence,the identification of m6A modification sites provides valuable insi...N6-methyladenosine(m6A)is an important RNA methylation modification involved in regulating diverse biological processes across multiple species.Hence,the identification of m6A modification sites provides valuable insight into the biological mechanisms of complex diseases at the post-transcriptional level.Although a variety of identification algorithms have been proposed recently,most of them capture the features of m6A modification sites by focusing on the sequential dependencies of nucleotides at different positions in RNA sequences,while ignoring the structural dependencies of nucleotides in their threedimensional structures.To overcome this issue,we propose a cross-species end-to-end deep learning model,namely CR-NSSD,which conduct a cross-domain representation learning process integrating nucleotide structural and sequential dependencies for RNA m6A site identification.Specifically,CR-NSSD first obtains the pre-coded representations of RNA sequences by incorporating the position information into single-nucleotide states with chaos game representation theory.It then constructs a crossdomain reconstruction encoder to learn the sequential and structural dependencies between nucleotides.By minimizing the reconstruction and binary cross-entropy losses,CR-NSSD is trained to complete the task of m6A site identification.Extensive experiments have demonstrated the promising performance of CR-NSSD by comparing it with several state-of-the-art m6A identification algorithms.Moreover,the results of cross-species prediction indicate that the integration of sequential and structural dependencies allows CR-NSSD to capture general features of m6A modification sites among different species,thus improving the accuracy of cross-species identification.展开更多
Attributed to its excellent physicochemical properties,graphene(GR)has very active applications in the fields of catalysis,optoelectronic devices,and battery electrode materials.However,until now,regulating the type a...Attributed to its excellent physicochemical properties,graphene(GR)has very active applications in the fields of catalysis,optoelectronic devices,and battery electrode materials.However,until now,regulating the type and density of carriers in GR is still crucial for its practical applications.Here,reduced graphene oxide(RGO)-Bi_(2)Te_(3)heterojunctions doped with different contents were prepared by a simple one-step method.The Bi_(2)Te_(3)materials containing different RGO were made into broadband(365–850 nm)photoelectrochemical-type detectors,and the effects of the doping amount of RGO on the optoelectronic behavior of the devices and the intrinsic operation mechanism of the devices were investigated in detail.The results show that the values of Iph/Idark,Ri,and D*of Bi_(2)Te_(3)/RGO heterojunction devices obtained with 1 mg of RGO doping are 412,6.072 mA/W,and 2.4061010 Jones,respectively.It is anticipated that this work will provide a research basis for future quantitative tuning of the performance of micro-nano devices by GR.展开更多
Generating co-speech gestures for interactive digital humans remains challenging because of the indeterministic nature of the problem.The authors observe that gestures generated from speech audio or text by existing n...Generating co-speech gestures for interactive digital humans remains challenging because of the indeterministic nature of the problem.The authors observe that gestures generated from speech audio or text by existing neural methods often contain less movement shift than expected,which can be viewed as slow or dull.Thus,a new generative model coupled with memory networks as dynamic dictionaries for speech-driven gesture generation with improved diversity is proposed.More specifically,the dictionary network dynamically stores connections between text and pose features in a list of key-value pairs as the memory for the pose generation network to look up;the pose generation network then merges the matching pose features and input audio features for generating the final pose sequences.To make the improvements more accurately measurable,a new objective evaluation metric for gesture diversity that can remove the influence of low-quality motions is also proposed and tested.Quantitative and qualitative experiments demonstrate that the proposed architecture succeeds in generating gestures with improved diversity.展开更多
Muon scattering tomography is believed to be a promising technique for cargo container inspection, owing to the ability of natural muons to penetrate into dense materials and the absence of artificial radiation. In th...Muon scattering tomography is believed to be a promising technique for cargo container inspection, owing to the ability of natural muons to penetrate into dense materials and the absence of artificial radiation. In this work, the material discrimination ability of muon scattering tomography is evaluated based on experiments at the Tsinghua University cosmic ray muon tomography facility,with four materials: flour(as drugs substitute), aluminum,steel, and lead. The features of the different materials could be discriminated with cluster analysis and classifiers based on support vector machine. The overall discrimination precisions for these four materials could reach 70, 95, and 99% with 1-, 5-, and 10-min-long measurement,respectively.展开更多
Intrinsic radiation of materials is one of the major backgrounds for many rare-event search experiments.Thus,the production of pure materials in an underground laboratory is a promising approach for eliminating cosmog...Intrinsic radiation of materials is one of the major backgrounds for many rare-event search experiments.Thus,the production of pure materials in an underground laboratory is a promising approach for eliminating cosmogenic radionuclides.In this paper,we demonstrate a procedure to evaluate the yields of cosmogenic radionuclides in copper and germanium in the second phase of the China Jinping Underground Laboratory.Our results show that for copper and germanium materials,the largest cosmogenic background comes from 3 H and57,58,60Co,and 3 H and 68Ge,respectively,which all have yields on the order of 10-7 kg-1 day-1.The corresponding radioactivities after 90 days pf exposure underground are estimated to be lower than 10-6μBq kg-1.展开更多
Gamma-Ray Integrated Detectors(GRID)mis-sion is a student project designed to use multiple gamma-ray detectors carried by nanosatellites(CubeSats),forming a full-time all-sky gamma-ray detection network that monitors ...Gamma-Ray Integrated Detectors(GRID)mis-sion is a student project designed to use multiple gamma-ray detectors carried by nanosatellites(CubeSats),forming a full-time all-sky gamma-ray detection network that monitors the transient gamma-ray sky in the multi-mes-senger astronomy era.A compact CubeSat gamma-ray detector,including its hardware and firmware,was designed and implemented for the mission.The detector employs four Gd 2 Al 2 Ga 3 O 12:Ce(GAGG:Ce)scintillators coupled with four silicon photomultiplier(SiPM)arrays to achieve a high gamma-ray detection efficiency between 10 keV and 2 MeV with low power and small dimensions.The first detector designed by the undergraduate student team onboard a commercial CubeSat was launched into a Sun-synchronous orbit on October 29,2018.The detector was in a normal observation state and accumulated data for approximately one month after on-orbit functional and performance tests,which were conducted in 2019.展开更多
The broad-energy germanium(BEGe)detector,with the ability of background discrimination using pulse shape discrimination,is a competitive candidate for neutrinoless double beta decay(ovββ)experiments.In this paper,we...The broad-energy germanium(BEGe)detector,with the ability of background discrimination using pulse shape discrimination,is a competitive candidate for neutrinoless double beta decay(ovββ)experiments.In this paper,we report our measurements of key parameters for detector modeling in a commercial p-type BEGe detector.Point-like sources are used to investigate energy resolution and linearity of the detector.A cylindrical volume source is used for efficiency calibration.With an assembled device for source positioning and a collimated ^(133)Ba source,the detector is scanned to check its active volume.Using an^(241)Am point-like source,the dead layer thicknesses is measured at about 0.17 mm on the front and 1.18 mm on the side.The detector characterization is of importance for BEGe detectors to be used in the ovββ experiments at China JinPing underground Laboratory(CJPL).展开更多
Numerical simulations based on a high-resolution three-dimensional MIT general circulation model(MITgcm)using realistic topography and tidal forcing are conducted to investigate the generation and propagation of the s...Numerical simulations based on a high-resolution three-dimensional MIT general circulation model(MITgcm)using realistic topography and tidal forcing are conducted to investigate the generation and propagation of the so-called type-a waves(large-amplitude rank-ordered wave packets)and type-b waves(isolated wave packets)in the northern South China Sea.At first,we summarized and analyzed the generation and propagation characteristics of these waves.Then,energy budget at the Luzon Strait is calculated.Energy generation has three local maxima every day,of which the largest one corresponds to the emergence of the type-a wave.Energy flux at the west boundary of the Luzon Strait shows two local maxima each day.The larger one is consistent with the generation of the type-a wave and the smaller one is in correspondence with the generation of the type-b wave.Sensitivity experiments are designed to explore the role of the east and west ridge of the Luzon Strait on the generation and propagation of the type-a and type-b waves.It is found that the east ridge is indispensable on the generation of the type-a wave while the west ridge has little contribution.The west ridge diminishes the type-a waves'amplitude but hardly changes their propagation speed.The type-b waves also come from perturbation signals which originate from the east ridge and are enhanced in amplitude and reduced in propagation speed by the west ridge.展开更多
The properties of the triplet excited state of [60]fullerene-containing cyclic sulphoxide have been investigated by time-resolved absorption spectroscopy. Transient absorption bands of [60]fullerene-containing cyclic...The properties of the triplet excited state of [60]fullerene-containing cyclic sulphoxide have been investigated by time-resolved absorption spectroscopy. Transient absorption bands of [60]fullerene-containing cyclic sulphoxide showed two decay-components, which were attributed to triplet excited states of different spin multiplicity. The properties of photoexcited states of [60]fullerene-containing cyclic sulphoxide are also reported.展开更多
[Objectives] This study was conducted to investigate the effects of different proportions of spent Pleurotus ostreatus substrate on the germination and seedling growth of mung beans. [Methods] The cellulose-degrading ...[Objectives] This study was conducted to investigate the effects of different proportions of spent Pleurotus ostreatus substrate on the germination and seedling growth of mung beans. [Methods] The cellulose-degrading bacteria HB8 and HF1 were mixed with a commercially available microbial composting agent, respectively, for the composting of spent P. ostreatus substrate. Mung beans were cultivated with different proportions of spent mushroom substrate compost and soil. The seed germination rate, plant height, fresh weight and chlorophyll content of mung bean were used as indicators to investigate the effects of the organic fertilizer from spent P. ostreatus substrate on the growth of mung bean seedlings. [Results] The addition of cellulose-degrading bacteria can significantly improve the composting effect of the spent mushroom substrate. After 8 d of cultivation of mung beans with different ratios of the mushroom substrate organic fertilizer, 50% of the organic fertilizer can make the plant height, fresh weight and leaf chlorophyll content of mung bean seedlings reach the highest value and was suitable for mung bean breeding and cultivation. [Conclusions] This study provides scientific basis and technical indicators for the rapid and harmless treatment of spent mushroom substrate and its application in crop cultivation and nursery.展开更多
随着测序技术的不断发展,产生了海量的基因组测序数据,极大地丰富了公共遗传数据资源。同时为了应对大量基因组数据的产生,基因组比较和注释算法、工具不断更新,使得联合多种注释工具得到更准确的蛋白编码基因的注释信息成为可能。目前...随着测序技术的不断发展,产生了海量的基因组测序数据,极大地丰富了公共遗传数据资源。同时为了应对大量基因组数据的产生,基因组比较和注释算法、工具不断更新,使得联合多种注释工具得到更准确的蛋白编码基因的注释信息成为可能。目前公共数据库的原核生物基因组测序和装配有些是10多年前的,存在大量预测的功能未知的编码基因。为了提升美国国家生物信息中心(National Center for Biotechnology Information,NCBI)数据库中基因组的注释质量,本研究联合使用多种原核基因识别算法/软件和基因表达数据重注释1587个细菌和古细菌基因组。首先,利用Z曲线的33个变量从177个基因组原注释中识别获得3092个被过度注释为蛋白编码基因的序列;其次,通过同源比对为939个基因组中的4447个功能未知的蛋白编码基因注释上具体功能;最后,通过联合采用ZCURVE 3.0和Glimmer 3.02以及Prodigal这3种高精度的、广泛使用且基于算法不同而互补的基因识别软件来寻找漏注释基因。最终,从9个基因组中找到了2003个被漏注释的蛋白编码基因,这些基因属于多个蛋白质直系同源簇(clusters of orthologous groups of proteins, COG)。本研究使用新的工具并结合多组学数据重新注释早期测序的细菌和古细菌基因组,不仅为新测序菌株提供注释方法参考,而且这些重注释后得到的细菌基因序列也会对后续基础研究有所帮助。展开更多
Melting of crystalline material is a common physical phenomenon,yet it remains elusive owing to the diversity in physical pictures.In this work,we proposed a deep learning architecture to learn the physical states(sol...Melting of crystalline material is a common physical phenomenon,yet it remains elusive owing to the diversity in physical pictures.In this work,we proposed a deep learning architecture to learn the physical states(solid-or liquidphase)from the atomic trajectories of the bulk crystalline materials with four typical lattice types.The method has ultrahigh accuracy(higher than 95%)for the classification of solid-liquid atoms during the phase transition process and is almost insensitive to temperature.The atomic physical states are identified from atomic behaviors without considering any characteristic threshold parameter,which yet is necessary for the classical methods.The phase transition of bulk crystalline materials can be correctly predicted by learning from the atomic behaviors of different materials,which confirms the close correlation between atomic behaviors and atomic physical states.These evidences forecast that there should be a more general undiscovered physical quantity implicated in the atomic behaviors and elucidate the nature of bulk crystalline melting.展开更多
Based on a two-level nested model from the global ocean to the western Pacific and then to the South China Sea(SCS),the high-resolution SCS deep circulation is numerically investigated.The SCS deep circulation shows a...Based on a two-level nested model from the global ocean to the western Pacific and then to the South China Sea(SCS),the high-resolution SCS deep circulation is numerically investigated.The SCS deep circulation shows a basin-scale cyclonic structure with a strong southward western boundary current in summer(July),a northeast-southwest through-flow pattern across the deep basin without a western boundary current in winter(January),and a transitional pattern in spring and autumn.The sensitivity model experiments illustrate that the Luzon Strait deep overflow is the main factor controlling the seasonal variation in the SCS deep circulation.The SCS surface wind can significantly influence the SCS deep circulation in winter.The Luzon Strait deep overflow transport from the Pacific into the SCS ranges from 0.68×10^(6) m^(3)/s to 1.83×10^(6) m^(3)/s,reaching its maximum in summer(July,up to 1.83×10^(6) m^(3)/s),less in autumn and winter,and the minimum in spring(May,0.68×10^(6) m^(3)/s).In summer,the strong Luzon Strait deep overflow dominates the SCS deep circulation when the role of the SCS surface wind is small.In winter,the weaker Luzon Strait deep overflow and SCS surface wind jointly drive the SCS deep circulation into a northeast-southwest through-flow pattern.The potential vorticity(PV)dissipation in the SCS deep basin reaches its maximum(−0.122 m^(2)/s^(2))in May and its minimum(−0.380 m^(2)/s^(2))in July.展开更多
Cubic gauche polynitrogen(cg-N)is an attractive high-energy density material.However,high-pressure synthesized cg-N will decompose at low pressure and cannot exist under ambient conditions.Here,the stabilities of cg-N...Cubic gauche polynitrogen(cg-N)is an attractive high-energy density material.However,high-pressure synthesized cg-N will decompose at low pressure and cannot exist under ambient conditions.Here,the stabilities of cg-N surfaces with and without saturations at different pressures and temperatures are systematically investigated based on first-principles calculations and molecular dynamics simulations.Pristine surfaces at 0 GPa are very brittle and will decompose at 300 K,especially(110)surface will collapse completely just after structural relaxation,whereas the decompositions of surfaces can be suppressed by applying pressure,indicating that surface instability causes the cg-N decomposition at low pressure.Due to the saturation of dangling bonds and transferring electrons to the surfaces,saturation with H can stabilize surfaces under ambient conditions,while it is impossible for OH saturation to occur solely from obtaining electrons from surfaces.This suggests that polynitrogen is more stable in an acidic environment or when the surface is saturated with less electronegative adsorbates.展开更多
Spontaneous intracerebral hemorrhage(ICH)represents the second most common type of stroke,with high mortality and disability rates.^([1,2])In 2010,there were approximately 5.3 million ICH cases,with 3 million deaths w...Spontaneous intracerebral hemorrhage(ICH)represents the second most common type of stroke,with high mortality and disability rates.^([1,2])In 2010,there were approximately 5.3 million ICH cases,with 3 million deaths worldwide.^([1])However,there is still no validated medical treatment for ICH,with the role of surgery remaining controversial.^([2,3])Cusack et al^([4])demonstrated that lowering blood pressure rapidly in hypertensive ICH patients may be safe and at least partially effective in inhibiting hematoma expansion.展开更多
基金supported by the National Natural Science Foundation of China(No.12025301)the Tsinghua University Initiative Scientific Research Program.
文摘Track reconstruction algorithms are critical for polarization measurements.Convolutional neural networks(CNNs)are a promising alternative to traditional moment-based track reconstruction approaches.However,the hexagonal grid track images obtained using gas pixel detectors(GPDs)for better anisotropy do not match the classical rectangle-based CNN,and converting the track images from hexagonal to square results in a loss of information.We developed a new hexagonal CNN algorithm for track reconstruction and polarization estimation in X-ray polarimeters,which was used to extract the emission angles and absorption points from photoelectron track images and predict the uncer-tainty of the predicted emission angles.The simulated data from the PolarLight test were used to train and test the hexagonal CNN models.For individual energies,the hexagonal CNN algorithm produced 15%-30%improvements in the modulation factor compared to the moment analysis method for 100%polarized data,and its performance was comparable to that of the rectangle-based CNN algorithm that was recently developed by the Imaging X-ray Polarimetry Explorer team,but at a lower computational and storage cost for preprocessing.
基金Project supported by the CASHIPS Director’s Fund(Grant Nos.YZJJ202207-CX,YZJJ202308-TS,YZJJGGZX-2022-01)。
文摘A high-efficient one-step synthesis of cubic gauche polymeric nitrogen was developed just by thermal treatment of KN3powders.Raman and infrared spectra confirm the formation of cubic gauche polymeric nitrogen.Further thermogravimetric differential scanning calorimeter measurements show that the content of cubic gauche polymeric nitrogen is as high as 1.5 wt%with high thermal stability,which is the highest content value reported so far.
基金supported in part by the National Natural Science Foundation of China(62373348)the Natural Science Foundation of Xinjiang Uygur Autonomous Region(2021D01D05)+1 种基金the Tianshan Talent Training Program(2023TSYCLJ0021)the Pioneer Hundred Talents Program of Chinese Academy of Sciences.
文摘N6-methyladenosine(m6A)is an important RNA methylation modification involved in regulating diverse biological processes across multiple species.Hence,the identification of m6A modification sites provides valuable insight into the biological mechanisms of complex diseases at the post-transcriptional level.Although a variety of identification algorithms have been proposed recently,most of them capture the features of m6A modification sites by focusing on the sequential dependencies of nucleotides at different positions in RNA sequences,while ignoring the structural dependencies of nucleotides in their threedimensional structures.To overcome this issue,we propose a cross-species end-to-end deep learning model,namely CR-NSSD,which conduct a cross-domain representation learning process integrating nucleotide structural and sequential dependencies for RNA m6A site identification.Specifically,CR-NSSD first obtains the pre-coded representations of RNA sequences by incorporating the position information into single-nucleotide states with chaos game representation theory.It then constructs a crossdomain reconstruction encoder to learn the sequential and structural dependencies between nucleotides.By minimizing the reconstruction and binary cross-entropy losses,CR-NSSD is trained to complete the task of m6A site identification.Extensive experiments have demonstrated the promising performance of CR-NSSD by comparing it with several state-of-the-art m6A identification algorithms.Moreover,the results of cross-species prediction indicate that the integration of sequential and structural dependencies allows CR-NSSD to capture general features of m6A modification sites among different species,thus improving the accuracy of cross-species identification.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFA0705201)the National Natural Science Foundation of China(Grant No.U2032129).
文摘Attributed to its excellent physicochemical properties,graphene(GR)has very active applications in the fields of catalysis,optoelectronic devices,and battery electrode materials.However,until now,regulating the type and density of carriers in GR is still crucial for its practical applications.Here,reduced graphene oxide(RGO)-Bi_(2)Te_(3)heterojunctions doped with different contents were prepared by a simple one-step method.The Bi_(2)Te_(3)materials containing different RGO were made into broadband(365–850 nm)photoelectrochemical-type detectors,and the effects of the doping amount of RGO on the optoelectronic behavior of the devices and the intrinsic operation mechanism of the devices were investigated in detail.The results show that the values of Iph/Idark,Ri,and D*of Bi_(2)Te_(3)/RGO heterojunction devices obtained with 1 mg of RGO doping are 412,6.072 mA/W,and 2.4061010 Jones,respectively.It is anticipated that this work will provide a research basis for future quantitative tuning of the performance of micro-nano devices by GR.
基金National Key R&D Programme of China(2022YFF0902202).
文摘Generating co-speech gestures for interactive digital humans remains challenging because of the indeterministic nature of the problem.The authors observe that gestures generated from speech audio or text by existing neural methods often contain less movement shift than expected,which can be viewed as slow or dull.Thus,a new generative model coupled with memory networks as dynamic dictionaries for speech-driven gesture generation with improved diversity is proposed.More specifically,the dictionary network dynamically stores connections between text and pose features in a list of key-value pairs as the memory for the pose generation network to look up;the pose generation network then merges the matching pose features and input audio features for generating the final pose sequences.To make the improvements more accurately measurable,a new objective evaluation metric for gesture diversity that can remove the influence of low-quality motions is also proposed and tested.Quantitative and qualitative experiments demonstrate that the proposed architecture succeeds in generating gestures with improved diversity.
文摘Muon scattering tomography is believed to be a promising technique for cargo container inspection, owing to the ability of natural muons to penetrate into dense materials and the absence of artificial radiation. In this work, the material discrimination ability of muon scattering tomography is evaluated based on experiments at the Tsinghua University cosmic ray muon tomography facility,with four materials: flour(as drugs substitute), aluminum,steel, and lead. The features of the different materials could be discriminated with cluster analysis and classifiers based on support vector machine. The overall discrimination precisions for these four materials could reach 70, 95, and 99% with 1-, 5-, and 10-min-long measurement,respectively.
基金supported by the National Natural Science Foundation of China(No.U1865205).
文摘Intrinsic radiation of materials is one of the major backgrounds for many rare-event search experiments.Thus,the production of pure materials in an underground laboratory is a promising approach for eliminating cosmogenic radionuclides.In this paper,we demonstrate a procedure to evaluate the yields of cosmogenic radionuclides in copper and germanium in the second phase of the China Jinping Underground Laboratory.Our results show that for copper and germanium materials,the largest cosmogenic background comes from 3 H and57,58,60Co,and 3 H and 68Ge,respectively,which all have yields on the order of 10-7 kg-1 day-1.The corresponding radioactivities after 90 days pf exposure underground are estimated to be lower than 10-6μBq kg-1.
基金supported by the Tsinghua University Initiative Scientific Research Program,the National Natural Science Foundation of China(Nos.11633003,12025301,and 11821303)the National Key R&D Program of China(Nos.2018YFA0404502 and 2016YFA040080X).
文摘Gamma-Ray Integrated Detectors(GRID)mis-sion is a student project designed to use multiple gamma-ray detectors carried by nanosatellites(CubeSats),forming a full-time all-sky gamma-ray detection network that monitors the transient gamma-ray sky in the multi-mes-senger astronomy era.A compact CubeSat gamma-ray detector,including its hardware and firmware,was designed and implemented for the mission.The detector employs four Gd 2 Al 2 Ga 3 O 12:Ce(GAGG:Ce)scintillators coupled with four silicon photomultiplier(SiPM)arrays to achieve a high gamma-ray detection efficiency between 10 keV and 2 MeV with low power and small dimensions.The first detector designed by the undergraduate student team onboard a commercial CubeSat was launched into a Sun-synchronous orbit on October 29,2018.The detector was in a normal observation state and accumulated data for approximately one month after on-orbit functional and performance tests,which were conducted in 2019.
基金supported by National Natural Science Foundation of China(Nos.11175099&11355001)Tsinghua University Initiative Scientific Research Program(Nos.20151080354&2014Z21016)
文摘The broad-energy germanium(BEGe)detector,with the ability of background discrimination using pulse shape discrimination,is a competitive candidate for neutrinoless double beta decay(ovββ)experiments.In this paper,we report our measurements of key parameters for detector modeling in a commercial p-type BEGe detector.Point-like sources are used to investigate energy resolution and linearity of the detector.A cylindrical volume source is used for efficiency calibration.With an assembled device for source positioning and a collimated ^(133)Ba source,the detector is scanned to check its active volume.Using an^(241)Am point-like source,the dead layer thicknesses is measured at about 0.17 mm on the front and 1.18 mm on the side.The detector characterization is of importance for BEGe detectors to be used in the ovββ experiments at China JinPing underground Laboratory(CJPL).
基金The National Key Research and Development Plan of China under contract No.2016YFC1401300the National Natural Science Foundation of China under contract No.41276008the Taishan Scholars Program
文摘Numerical simulations based on a high-resolution three-dimensional MIT general circulation model(MITgcm)using realistic topography and tidal forcing are conducted to investigate the generation and propagation of the so-called type-a waves(large-amplitude rank-ordered wave packets)and type-b waves(isolated wave packets)in the northern South China Sea.At first,we summarized and analyzed the generation and propagation characteristics of these waves.Then,energy budget at the Luzon Strait is calculated.Energy generation has three local maxima every day,of which the largest one corresponds to the emergence of the type-a wave.Energy flux at the west boundary of the Luzon Strait shows two local maxima each day.The larger one is consistent with the generation of the type-a wave and the smaller one is in correspondence with the generation of the type-b wave.Sensitivity experiments are designed to explore the role of the east and west ridge of the Luzon Strait on the generation and propagation of the type-a and type-b waves.It is found that the east ridge is indispensable on the generation of the type-a wave while the west ridge has little contribution.The west ridge diminishes the type-a waves'amplitude but hardly changes their propagation speed.The type-b waves also come from perturbation signals which originate from the east ridge and are enhanced in amplitude and reduced in propagation speed by the west ridge.
文摘The properties of the triplet excited state of [60]fullerene-containing cyclic sulphoxide have been investigated by time-resolved absorption spectroscopy. Transient absorption bands of [60]fullerene-containing cyclic sulphoxide showed two decay-components, which were attributed to triplet excited states of different spin multiplicity. The properties of photoexcited states of [60]fullerene-containing cyclic sulphoxide are also reported.
基金Supported by Scientific Research Fund of Hunan Provincial Education Department(15C0721)Hunan Provincial Innovation Platform Open Fund Project(16K047)Hunan Provincial Construct Program of the Key Discipline
文摘[Objectives] This study was conducted to investigate the effects of different proportions of spent Pleurotus ostreatus substrate on the germination and seedling growth of mung beans. [Methods] The cellulose-degrading bacteria HB8 and HF1 were mixed with a commercially available microbial composting agent, respectively, for the composting of spent P. ostreatus substrate. Mung beans were cultivated with different proportions of spent mushroom substrate compost and soil. The seed germination rate, plant height, fresh weight and chlorophyll content of mung bean were used as indicators to investigate the effects of the organic fertilizer from spent P. ostreatus substrate on the growth of mung bean seedlings. [Results] The addition of cellulose-degrading bacteria can significantly improve the composting effect of the spent mushroom substrate. After 8 d of cultivation of mung beans with different ratios of the mushroom substrate organic fertilizer, 50% of the organic fertilizer can make the plant height, fresh weight and leaf chlorophyll content of mung bean seedlings reach the highest value and was suitable for mung bean breeding and cultivation. [Conclusions] This study provides scientific basis and technical indicators for the rapid and harmless treatment of spent mushroom substrate and its application in crop cultivation and nursery.
文摘随着测序技术的不断发展,产生了海量的基因组测序数据,极大地丰富了公共遗传数据资源。同时为了应对大量基因组数据的产生,基因组比较和注释算法、工具不断更新,使得联合多种注释工具得到更准确的蛋白编码基因的注释信息成为可能。目前公共数据库的原核生物基因组测序和装配有些是10多年前的,存在大量预测的功能未知的编码基因。为了提升美国国家生物信息中心(National Center for Biotechnology Information,NCBI)数据库中基因组的注释质量,本研究联合使用多种原核基因识别算法/软件和基因表达数据重注释1587个细菌和古细菌基因组。首先,利用Z曲线的33个变量从177个基因组原注释中识别获得3092个被过度注释为蛋白编码基因的序列;其次,通过同源比对为939个基因组中的4447个功能未知的蛋白编码基因注释上具体功能;最后,通过联合采用ZCURVE 3.0和Glimmer 3.02以及Prodigal这3种高精度的、广泛使用且基于算法不同而互补的基因识别软件来寻找漏注释基因。最终,从9个基因组中找到了2003个被漏注释的蛋白编码基因,这些基因属于多个蛋白质直系同源簇(clusters of orthologous groups of proteins, COG)。本研究使用新的工具并结合多组学数据重新注释早期测序的细菌和古细菌基因组,不仅为新测序菌株提供注释方法参考,而且这些重注释后得到的细菌基因序列也会对后续基础研究有所帮助。
基金Project supported by the China Postdoctoral Science Foundation(Grant No.2019M663935XB)the Natural Science Foundation of Shaanxi Province,China(Grant No.2019JQ-261)the National Natural Science Foundation of China(Grant Nos.11802225 and 51878548)
文摘Melting of crystalline material is a common physical phenomenon,yet it remains elusive owing to the diversity in physical pictures.In this work,we proposed a deep learning architecture to learn the physical states(solid-or liquidphase)from the atomic trajectories of the bulk crystalline materials with four typical lattice types.The method has ultrahigh accuracy(higher than 95%)for the classification of solid-liquid atoms during the phase transition process and is almost insensitive to temperature.The atomic physical states are identified from atomic behaviors without considering any characteristic threshold parameter,which yet is necessary for the classical methods.The phase transition of bulk crystalline materials can be correctly predicted by learning from the atomic behaviors of different materials,which confirms the close correlation between atomic behaviors and atomic physical states.These evidences forecast that there should be a more general undiscovered physical quantity implicated in the atomic behaviors and elucidate the nature of bulk crystalline melting.
基金The National Key Research and Development Program of China under contract No.2021YFF0704002the Aoshan Science and Technology Innovation Program of Pilot National Laboratory for Marine Science and Technology(Qingdao)under contract No.2018ASKJ01-04.
文摘Based on a two-level nested model from the global ocean to the western Pacific and then to the South China Sea(SCS),the high-resolution SCS deep circulation is numerically investigated.The SCS deep circulation shows a basin-scale cyclonic structure with a strong southward western boundary current in summer(July),a northeast-southwest through-flow pattern across the deep basin without a western boundary current in winter(January),and a transitional pattern in spring and autumn.The sensitivity model experiments illustrate that the Luzon Strait deep overflow is the main factor controlling the seasonal variation in the SCS deep circulation.The SCS surface wind can significantly influence the SCS deep circulation in winter.The Luzon Strait deep overflow transport from the Pacific into the SCS ranges from 0.68×10^(6) m^(3)/s to 1.83×10^(6) m^(3)/s,reaching its maximum in summer(July,up to 1.83×10^(6) m^(3)/s),less in autumn and winter,and the minimum in spring(May,0.68×10^(6) m^(3)/s).In summer,the strong Luzon Strait deep overflow dominates the SCS deep circulation when the role of the SCS surface wind is small.In winter,the weaker Luzon Strait deep overflow and SCS surface wind jointly drive the SCS deep circulation into a northeast-southwest through-flow pattern.The potential vorticity(PV)dissipation in the SCS deep basin reaches its maximum(−0.122 m^(2)/s^(2))in May and its minimum(−0.380 m^(2)/s^(2))in July.
基金supported by the National Natural Science Foundation of China(Grant No.U2030114)CASHIPS Director's Fund(Grant No.YZJJ202207-CX)。
文摘Cubic gauche polynitrogen(cg-N)is an attractive high-energy density material.However,high-pressure synthesized cg-N will decompose at low pressure and cannot exist under ambient conditions.Here,the stabilities of cg-N surfaces with and without saturations at different pressures and temperatures are systematically investigated based on first-principles calculations and molecular dynamics simulations.Pristine surfaces at 0 GPa are very brittle and will decompose at 300 K,especially(110)surface will collapse completely just after structural relaxation,whereas the decompositions of surfaces can be suppressed by applying pressure,indicating that surface instability causes the cg-N decomposition at low pressure.Due to the saturation of dangling bonds and transferring electrons to the surfaces,saturation with H can stabilize surfaces under ambient conditions,while it is impossible for OH saturation to occur solely from obtaining electrons from surfaces.This suggests that polynitrogen is more stable in an acidic environment or when the surface is saturated with less electronegative adsorbates.
基金supported by a grant from Sichuan Science and Technology Program,China(2019YFS0251).
文摘Spontaneous intracerebral hemorrhage(ICH)represents the second most common type of stroke,with high mortality and disability rates.^([1,2])In 2010,there were approximately 5.3 million ICH cases,with 3 million deaths worldwide.^([1])However,there is still no validated medical treatment for ICH,with the role of surgery remaining controversial.^([2,3])Cusack et al^([4])demonstrated that lowering blood pressure rapidly in hypertensive ICH patients may be safe and at least partially effective in inhibiting hematoma expansion.