As a vital and integral component of transportation infrastructure,pavement has a direct and tangible impact on socio-economic sustainability.In recent years,an influx of groundbreaking and state-of-the-art materials,...As a vital and integral component of transportation infrastructure,pavement has a direct and tangible impact on socio-economic sustainability.In recent years,an influx of groundbreaking and state-of-the-art materials,structures,equipment,and detection technologies related to road engineering have continually and progressively emerged,reshaping the landscape of pavement systems.There is a pressing and growing need for a timely summarization of the current research status and a clear identification of future research directions in these advanced and evolving technologies.Therefore,Journal of Road Engineering has undertaken the significant initiative of introducing a comprehensive review paper with the overarching theme of“advanced road materials,structures,equipment,and detection technologies”.This extensive and insightful review meticulously gathers and synthesizes research findings from 39 distinguished scholars,all of whom are affiliated with 19 renowned universities or research institutions specializing in the diverse and multidimensional field of highway engineering.It covers the current state and anticipates future development directions in the four major and interconnected domains of road engineering:advanced road materials,advanced road structures and performance evaluation,advanced road construction equipment and technology,and advanced road detection and assessment technologies.展开更多
The morphology of graded crushed stone(GCS)particles has an essential influence on the performance of aggregate mixtures.The impact of particle shape is a comprehensive effect that cannot be considered separately,lead...The morphology of graded crushed stone(GCS)particles has an essential influence on the performance of aggregate mixtures.The impact of particle shape is a comprehensive effect that cannot be considered separately,leading to difficulties in establishing the relationship between the mixture properties and the aggregate morphology by using laboratory methods.The discrete element method(DEM)is an effective way widely adopted to reconstruct the morphology of particles and simulate performance tests of granular materials.However,selecting limited particles characterizing a real particle-assembly for simulation is still a challenge in current research due to the inherent rich variability of particle shapes.In this study,based on the acquisition of three-dimensional(3D)aggregate shapes by using laser scanning,ellipsoid index(EDI)translating the particle shape as a function of surface area,volume,and contour length is proposed to comprehensively evaluate aggregate morphology.Further,a particle library capable of characterizing aggregate morphology distribution is established based on the statistics of the corresponding morphological characteristics of particle samples.The model reliability is validated by carrying out a series of experimental and numerical penetration tests with nine different gradations.The established particle library can be used to model aggregate mixtures and the proposed simulation framework is promising for optimizing the mixture gradation design numerically.展开更多
基金support from the European Union's Horizon 2020 Research and Innovation Program under the Marie Skłodowska-Curie grant agreement No.101024139,the RILEM technical committee TC 279 WMR(valorisation of waste and secondary materials for roads),RILEM technical committee TC-264 RAP(asphalt pavement recycling)the Swiss National Science Foundation(SNF)grant 205121_178991/1 for the project titled“Urban Mining for Low Noise Urban Roads and Optimized Design of Street Canyons”,National Natural Science Foundation of China(No.51808462,51978547,52005048,52108394,52178414,52208420,52278448,52308447,52378429)+9 种基金China Postdoctoral Science Foundation(No.2023M730356)National Key R&D Program of China(No.2021YFB2601302)Natural Science Basic Research Program of Shaanxi(Program No.2023-JC-QN-0472)Postdoctoral Science Foundation of Anhui Province(2022B627)Shaanxi Provincial Science and Technology Department(No.2022 PT30)Key Technological Special Project of Xinxiang City(No.22ZD013)Key Laboratory of Intelligent Manufacturing of Construction Machinery(No.IMCM2021KF02)the Applied Basic Research Project of Sichuan Science and Technology Department(Free Exploration Type)(Grant No.2020YJ0039)Key R&D Support Plan of Chengdu Science and Technology Project-Technology Innovation R&D Project(Grant No.2019-YF05-00002-SN)the China Postdoctoral Science Foundation(Grant No.2018M643520).
文摘As a vital and integral component of transportation infrastructure,pavement has a direct and tangible impact on socio-economic sustainability.In recent years,an influx of groundbreaking and state-of-the-art materials,structures,equipment,and detection technologies related to road engineering have continually and progressively emerged,reshaping the landscape of pavement systems.There is a pressing and growing need for a timely summarization of the current research status and a clear identification of future research directions in these advanced and evolving technologies.Therefore,Journal of Road Engineering has undertaken the significant initiative of introducing a comprehensive review paper with the overarching theme of“advanced road materials,structures,equipment,and detection technologies”.This extensive and insightful review meticulously gathers and synthesizes research findings from 39 distinguished scholars,all of whom are affiliated with 19 renowned universities or research institutions specializing in the diverse and multidimensional field of highway engineering.It covers the current state and anticipates future development directions in the four major and interconnected domains of road engineering:advanced road materials,advanced road structures and performance evaluation,advanced road construction equipment and technology,and advanced road detection and assessment technologies.
基金supported by Shandong Hi-speed Group Co.,Ltd.Maintenance Technology Project(grant no.2017B61)National Natural Science Foundation of China(no.52108393)+1 种基金the Fundamental Research Funds for the Central Universities,CHD(no.300102211307)China Scholarship Council(no.201806560055).
文摘The morphology of graded crushed stone(GCS)particles has an essential influence on the performance of aggregate mixtures.The impact of particle shape is a comprehensive effect that cannot be considered separately,leading to difficulties in establishing the relationship between the mixture properties and the aggregate morphology by using laboratory methods.The discrete element method(DEM)is an effective way widely adopted to reconstruct the morphology of particles and simulate performance tests of granular materials.However,selecting limited particles characterizing a real particle-assembly for simulation is still a challenge in current research due to the inherent rich variability of particle shapes.In this study,based on the acquisition of three-dimensional(3D)aggregate shapes by using laser scanning,ellipsoid index(EDI)translating the particle shape as a function of surface area,volume,and contour length is proposed to comprehensively evaluate aggregate morphology.Further,a particle library capable of characterizing aggregate morphology distribution is established based on the statistics of the corresponding morphological characteristics of particle samples.The model reliability is validated by carrying out a series of experimental and numerical penetration tests with nine different gradations.The established particle library can be used to model aggregate mixtures and the proposed simulation framework is promising for optimizing the mixture gradation design numerically.