期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
D-A-D structured selenadiazolesbenzothiadiazole-based near-infrared dye for enhanced photoacoustic imaging and photothermal cancer therapy 被引量:4
1
作者 Zijin Cheng Tian Zhang +6 位作者 Weili Wang Qing Shen Ying Hong Jinjun Shao Xiaoji Xie zhenghao fei Xiaochen Dong 《Chinese Chemical Letters》 SCIE CAS CSCD 2021年第4期1580-1585,共6页
Near-infrared(NIR)small molecular organic dyes as photothermal agents for cancer photothermal therapy(PTT)have attracted considerable research attention.Herein,two donor-acceptor-donor(D-A-D)structured NIR dyes,BBTT a... Near-infrared(NIR)small molecular organic dyes as photothermal agents for cancer photothermal therapy(PTT)have attracted considerable research attention.Herein,two donor-acceptor-donor(D-A-D)structured NIR dyes,BBTT and SeBTT,are rationally designed,where the only difference is one heteroatom within the acceptor unit varying from sulfur to selenium(Se).More importantly,SeBTT NPs exhibit stronger NIR absorbance and higher photothermal conversion efficiency(PTCE≈65.3%).In vivo experiments illustrate that SeBTT NPs can be utilized as a high contrast photoacoustic imaging(PAI)agent,and succeed in tumor suppression without noticeable damage to main organs under NIR photoirradiation.This study presents an effective molecular heteroatom surgery strategy to regulate the photothermal properties of NIR small molecules for enhanced PAI and PTT. 展开更多
关键词 PHOTOTHERMAL Near-infrared dye Cancer therapy DONOR-ACCEPTOR Selenadiazolesbenzothiadiazole
原文传递
Mesopolymer modified with palladium phthalocyaninesulfonate as a versatile photocatalyst for phenol and bisphenol A degradation under visible light irradiation 被引量:1
2
作者 Rong Xing Lin Wu +1 位作者 zhenghao fei Peng Wu 《Journal of Environmental Sciences》 SCIE EI CAS CSCD 2013年第8期1687-1695,共9页
A novel versatile photocatalyst, FDU-PdPcS, was prepared by immobilizing palladium phthalocyaninesulfonate (PdPcS) onto the FDU-15 mesopolymer via multi-step chemical modification processes involving chloromethylati... A novel versatile photocatalyst, FDU-PdPcS, was prepared by immobilizing palladium phthalocyaninesulfonate (PdPcS) onto the FDU-15 mesopolymer via multi-step chemical modification processes involving chloromethylation of the FDU-15 mesopolymer first with chloromethyl methyl ether, a subsequent amination reaction with ethylenediamine, and finally modification with palladium phthalocyaninesulfonate via ionic interaction. The obtained FDU-PdPcS photocatalyst was characterized by the X-ray diffraction (XRD), UV-Vis spectrosopy and inductively coupled plasma (ICP) techniques. This photocatalyst not only affords a high dispersion of monomeric PdPcS molecules, which may further be stabilized by the π-electron of benzene rings of FDU-15, but also provides a number of diamino groups inside the mesopores, which could be advantageous for the photodegradation of phenolic pollutants. In photodegradation studies of phenolic pollutants, the FDU-PdPcS catalyst exhibited excellent visible light photocatalytic activity and reusability. The photodegradation products of phenol and bisphenol A were investigated by the gas chromatoghraphy-mass spectrometry (GC-MS) technique. The results showed that the photodegradation products were composed of carboxylic acids and CO2. Isopropanol, sodium azide and benzoquinone were used as hydroxyl radical (OH.), singlet oxygen (1O2) and superoxide radical (O2.-) scavengers, respectively. The results suggested that 1O2 and O2. were the prominent active species during the photodegradation process. A possible mechanism for the photodegradation of phenol was also discussed. 展开更多
关键词 mesopolymer PHTHALOCYANINE photocatalysis visible light phenolic pollutants
原文传递
The iron-based biochar activating chlorite(ClO_(2)^(−))driven by mechanochemical ultrasonic:piecewise kinetics,biomimetic catalytic-mechanism,and novel advanced redox process
3
作者 Qihui Xu Qianhui Yang +3 位作者 Yuming Xie Lin Hu zhenghao fei Hong You 《Frontiers of Environmental Science & Engineering》 2025年第2期151-168,共18页
Chlorite(ClO_(2)^(−)or COI)is used to establish the advanced reduction and oxidation process(AROP).The iron/biochar-based particles(iron-based hydrothermal carbon with hinge-like structure,FebHCs,20 mg/L)can be utiliz... Chlorite(ClO_(2)^(−)or COI)is used to establish the advanced reduction and oxidation process(AROP).The iron/biochar-based particles(iron-based hydrothermal carbon with hinge-like structure,FebHCs,20 mg/L)can be utilized to activate COI(2 mmol/L)to present selective oxidation in removing triphenylmethane derivatives(15 min,90%).The protonation(H+at~102μmol/L level)played a huge role(k-2nd=0.136c-H+−0.014(R^(2)-adj=0.986),and rapp=−0.0876/c-H++1.017(R^(2)-adj=0.996))to boost the generation of the active species(e.g.,high-valent iron oxidizing species(HVI=O)and chlorine dioxide(ClO_(2))).The protonation-coupled electron transfer promoted Fe-substances in Feb/HCs activating COI(the calculated kobs ranging from 0.066−0.285 min^(−1)).The form of ClO_(2) mainly attributed to proton-coupled electron transfer(1e/1H+).The HVI=O was generated from the electron transfer within the coordination complex.Moreover,carbon particles in FebHCs serve as the bridge for electron transfer.The above roles contribute to the fracture and formation of coordination-induced bonds between Lx-FeII/III and ClO_(2)^(−)at phase interface to form AROP.The ultrasonic(US)cavitation enhanced the mass transfer of active species in bulk solution,and the HVI=O and ClO_(2) attack unsaturated central carbon atoms of triphenylmethane derivatives to initiate selective removal.Furthermore,the scale-up experiment with continuous flow(k values of approximately 0.2 min^(−1),COD removal efficiency of approximately 80%)and the reactor with COMSOL simulation have also proved the applicability of the system.The study offers a novel AROP and new insights into correspondingly heterogeneous interface activation mechanisms. 展开更多
关键词 Chlorite Iron-based biochar Ultrasonic Chlorine dioxide High-valent iron oxidizing species
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部