期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Recent Advances in Drilling Tool Temperature:A State‑of‑the‑Art Review 被引量:1
1
作者 zhaoju zhu Xinhui Sun +2 位作者 Kai Guo Jie Sun Jianfeng Li 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2022年第6期23-62,共40页
Drilling is regarded as the most complex manufacturing process compared with other conventional machining processes.During the drilling process,most of the energy consumed in metal cutting is converted to heat and inc... Drilling is regarded as the most complex manufacturing process compared with other conventional machining processes.During the drilling process,most of the energy consumed in metal cutting is converted to heat and increases temperature considerably.The resulting thermal phenomena are important since they influence the mode of deformation,the final metallurgical state of the machined surface,and the rate of tool wear.Hence,understanding the temperature characteristics in the drilling process is crucial for enhancing the drill performance and process efficiency.Extensive efforts have been conducted to measure and control the drilling tool temperature successively.However,very few studies have been conducted from a comprehensive perspective to review all the efforts.To address this gap in the literature,a rigorous review concerning the state-of-the-art results and advances in drilling tool temperature is presented in this paper by referring to the wide comparisons among literature analyses.The multiple aspects of drilling tool temperature are precisely detailed and discussed in terms of theoretical analysis and thermal modeling,methods for temperature measuring,the effect of cutting parameters,tool geometries and hole-making methods on temperature and temperature controlling by different cooling methods.In conclusion,several possible future research directions are discussed to offer potential insights for the drilling community and future researchers. 展开更多
关键词 DRILLING Tool temperature Advance materials Cutting characteristics
在线阅读 下载PDF
Performance of novel 3D printing tools in removing coronary-artery calcification tissue
2
作者 Chuhang Gao zhaoju zhu +5 位作者 Zirui Huang Liujing Chen Lihong Lu Mingcheng Fang Yao Liu Bingwei He 《Bio-Design and Manufacturing》 SCIE EI CAS CSCD 2023年第4期390-404,共15页
Rotational atherectomy is an effective treatment for severe vascular calcification obstruction,and relies on high-speed grinding(typically 130,000–210,000 r/min)with miniature grinding tools to remove calcified tissu... Rotational atherectomy is an effective treatment for severe vascular calcification obstruction,and relies on high-speed grinding(typically 130,000–210,000 r/min)with miniature grinding tools to remove calcified tissue and restore blood flow.However,reports of intraoperative complications are common because of the grinding force,temperature,and debris directly acting on the body during the grinding process,which can easily cause damage to patients.In this study,three novel grinding tools were designed and fabricated and a series of experiments have been conducted to analyze the effects of tool geometry and parameters on grinding performance,that is,force,temperature,and specimen surface morphology.The results show that these tools can effectively remove simulated calcified tissue and that they have two motions,rotation and revolution,in the tube.At higher rotational speeds,grinding force and temperature increase noticeably,while the amount of debris decreases significantly.In addition,by observing the surface morphology of the specimens,we concluded that the material removal rate per unit time is influenced by both rotational speed and tool geometry,and that high rotational speed and a rough tool surface can improve the material removal rate efficiently. 展开更多
关键词 Rotational atherectomy Grinding tool Grinding performance Parameter analysis
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部