期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Monodomain Liquid Crystals of Two-Dimensional Sheets by Boundary-Free Sheargraphy 被引量:2
1
作者 Min Cao Senping liu +10 位作者 Qingli Zhu Ya Wang Jingyu Ma zeshen li Dan Chang Enhui Zhu Xin Ming Yingjun liu Yanqiu Jiang Zhen Xu Chao Gao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第12期14-26,共13页
Eliminating topological defects to achieve monodomain liquid crystals is highly significant for the fundamental studies of soft matter and building long-range ordered materials.However,liquid crystals are metastable a... Eliminating topological defects to achieve monodomain liquid crystals is highly significant for the fundamental studies of soft matter and building long-range ordered materials.However,liquid crystals are metastable and sensitive to external stimuli,such as flow,confinement,and electromagnetic fields,which cause their intrinsic polycrystallinity and topological defects.Here,we achieve the monodomain liquid crystals of graphene oxide over 30 cm through boundary-free sheargraphy.The obtained monodomain liquid crystals exhibit large-area uniform alignment of sheets,which has the same optical polarized angle and intensity.The monodomain liquid crystals provide bidirectionally ordered skeletons,which can be applied as lightweight thermal management materials with bidirectionally high thermal and electrical conductivity.Furthermore,we extend the controllable topology of two-dimensional colloids by introducing singularities and disclinations in monodomain liquid crystals.Topological structures with defect strength from−2 to+2 were realized.This work provides a facile methodology to study the structural order of soft matter at a macroscopic level,facilitating the fabrication of metamaterials with tunable and highly anisotropic architectures. 展开更多
关键词 MONODOMAIN Liquid crystals Graphene oxide Boundary-free sheargraphy Topological structure
在线阅读 下载PDF
Precise Thermoplastic Processing of Graphene Oxide Layered Solid by Polymer Intercalation 被引量:1
2
作者 zeshen li Fan Guo +10 位作者 Kai Pang Jiahao lin Qiang Gao Yance Chen Dan Chang Ya Wang Senping liu Yi Han Yingjun liu Zhen Xu Chao Gao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2022年第1期226-238,共13页
The processing capability is vital for the wide applications of materials to forge structures as-demand.Graphene-based macroscopic materials have shown excellent mechanical and functional properties.However,different ... The processing capability is vital for the wide applications of materials to forge structures as-demand.Graphene-based macroscopic materials have shown excellent mechanical and functional properties.However,different from usual polymers and metals,graphene solids exhibit limited deformability and processibility for precise forming.Here,we present a precise thermoplastic forming of graphene materials by polymer intercalation from graphene oxide(GO)precursor.The intercalated polymer enables the thermoplasticity of GO solids by thermally activated motion of polymer chains.We detect a critical minimum containing of intercalated polymer that can expand the interlayer spacing exceeding 1.4 nm to activate thermoplasticity,which becomes the criteria for thermal plastic forming of GO solids.By thermoplastic forming,the flat GO-composite films are forged to Gaussian curved shapes and imprinted to have surface relief patterns with size precision down to 360 nm.The plastic-formed structures maintain the structural integration with outstanding electrical(3.07×10^(5) S m^(−1))and thermal conductivity(745.65 W m^(−1) K^(−1))after removal of polymers.The thermoplastic strategy greatly extends the forming capability of GO materials and other layered materials and promises versatile structural designs for more broad applications. 展开更多
关键词 Thermoplastic forming Graphene materials Polymer intercalation Processing capability Structural design
在线阅读 下载PDF
Correction:Monodomain Liquid Crystals of Two‑Dimensional Sheets by Boundary‑Free Sheargraphy
3
作者 Min Cao Senping liu +13 位作者 Qingli Zhu Ya Wang Jingyu Ma zeshen li Dan Chang Enhui Zhu Xin Ming Florian Puchtler Josef Breu Ziliang Wu Yingjun liu Yanqiu Jiang Zhen Xu Chao Gao 《Nano-Micro Letters》 SCIE EI CAS CSCD 2023年第12期126-126,共1页
In this article Florian Puchtler at affiliation‘University of Bayreuth’,Josef Breu at affiliation‘University of Bayreuth’,and Ziliang Wu at affiliation‘Zhejiang University’was missing from the author Min Cao,Sen... In this article Florian Puchtler at affiliation‘University of Bayreuth’,Josef Breu at affiliation‘University of Bayreuth’,and Ziliang Wu at affiliation‘Zhejiang University’was missing from the author Min Cao,Senping Liu,Qingli Zhu,Ya Wang,Jingyu Ma,Zeshen Li,Dan Chang,Enhui Zhu,Xin Ming,Florian Puchtler,Josef Breu,Ziliang Wu,Yingjun Liu,Yanqiu Jiang,Zhen Xu,Chao Gao list. 展开更多
关键词 SHEAR Crystal MISSING
在线阅读 下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部