Eliminating topological defects to achieve monodomain liquid crystals is highly significant for the fundamental studies of soft matter and building long-range ordered materials.However,liquid crystals are metastable a...Eliminating topological defects to achieve monodomain liquid crystals is highly significant for the fundamental studies of soft matter and building long-range ordered materials.However,liquid crystals are metastable and sensitive to external stimuli,such as flow,confinement,and electromagnetic fields,which cause their intrinsic polycrystallinity and topological defects.Here,we achieve the monodomain liquid crystals of graphene oxide over 30 cm through boundary-free sheargraphy.The obtained monodomain liquid crystals exhibit large-area uniform alignment of sheets,which has the same optical polarized angle and intensity.The monodomain liquid crystals provide bidirectionally ordered skeletons,which can be applied as lightweight thermal management materials with bidirectionally high thermal and electrical conductivity.Furthermore,we extend the controllable topology of two-dimensional colloids by introducing singularities and disclinations in monodomain liquid crystals.Topological structures with defect strength from−2 to+2 were realized.This work provides a facile methodology to study the structural order of soft matter at a macroscopic level,facilitating the fabrication of metamaterials with tunable and highly anisotropic architectures.展开更多
The processing capability is vital for the wide applications of materials to forge structures as-demand.Graphene-based macroscopic materials have shown excellent mechanical and functional properties.However,different ...The processing capability is vital for the wide applications of materials to forge structures as-demand.Graphene-based macroscopic materials have shown excellent mechanical and functional properties.However,different from usual polymers and metals,graphene solids exhibit limited deformability and processibility for precise forming.Here,we present a precise thermoplastic forming of graphene materials by polymer intercalation from graphene oxide(GO)precursor.The intercalated polymer enables the thermoplasticity of GO solids by thermally activated motion of polymer chains.We detect a critical minimum containing of intercalated polymer that can expand the interlayer spacing exceeding 1.4 nm to activate thermoplasticity,which becomes the criteria for thermal plastic forming of GO solids.By thermoplastic forming,the flat GO-composite films are forged to Gaussian curved shapes and imprinted to have surface relief patterns with size precision down to 360 nm.The plastic-formed structures maintain the structural integration with outstanding electrical(3.07×10^(5) S m^(−1))and thermal conductivity(745.65 W m^(−1) K^(−1))after removal of polymers.The thermoplastic strategy greatly extends the forming capability of GO materials and other layered materials and promises versatile structural designs for more broad applications.展开更多
In this article Florian Puchtler at affiliation‘University of Bayreuth’,Josef Breu at affiliation‘University of Bayreuth’,and Ziliang Wu at affiliation‘Zhejiang University’was missing from the author Min Cao,Sen...In this article Florian Puchtler at affiliation‘University of Bayreuth’,Josef Breu at affiliation‘University of Bayreuth’,and Ziliang Wu at affiliation‘Zhejiang University’was missing from the author Min Cao,Senping Liu,Qingli Zhu,Ya Wang,Jingyu Ma,Zeshen Li,Dan Chang,Enhui Zhu,Xin Ming,Florian Puchtler,Josef Breu,Ziliang Wu,Yingjun Liu,Yanqiu Jiang,Zhen Xu,Chao Gao list.展开更多
基金The authors gratefully acknowledge the support of National Key Research and Development Program of China(2020YFE0204400)National Natural Science Foundation of China(Nos.52090030,52122301,51973191)+3 种基金Shanxi-Zheda Institute of New Materials and Chemical Engineering(2012SZ-FR004)Hundred Talents Program of Zhejiang University(188020*194231701/113)China Postdoctoral Science Foundation(2021M692772)supported by the Fundamental Research Funds for the Central Universities(Nos.2021FZZX001-17).
文摘Eliminating topological defects to achieve monodomain liquid crystals is highly significant for the fundamental studies of soft matter and building long-range ordered materials.However,liquid crystals are metastable and sensitive to external stimuli,such as flow,confinement,and electromagnetic fields,which cause their intrinsic polycrystallinity and topological defects.Here,we achieve the monodomain liquid crystals of graphene oxide over 30 cm through boundary-free sheargraphy.The obtained monodomain liquid crystals exhibit large-area uniform alignment of sheets,which has the same optical polarized angle and intensity.The monodomain liquid crystals provide bidirectionally ordered skeletons,which can be applied as lightweight thermal management materials with bidirectionally high thermal and electrical conductivity.Furthermore,we extend the controllable topology of two-dimensional colloids by introducing singularities and disclinations in monodomain liquid crystals.Topological structures with defect strength from−2 to+2 were realized.This work provides a facile methodology to study the structural order of soft matter at a macroscopic level,facilitating the fabrication of metamaterials with tunable and highly anisotropic architectures.
基金the support of the National Natural Science Foundation of China(Nos.51803177,51973191,51533008,and 51636002)National Key R&D Program of China(No.2016YFA0200200)+5 种基金the China Postdoctoral Science Foundation(No.2021M690134)Hundred Talents Program of Zhejiang University(188020*194231701/113)Key Research and Development Plan of Zhejiang Province(2018C01049)the National Postdoctoral Program for Innovative Talents(No.BX201700209)the Fundamental Research Funds for the Central Universities(2021FZZX001-17),the Natural Science Foundation of Jiangsu Province(BK20210353)the Fundamental Research Funds for the Central Universities(No.30920041106).
文摘The processing capability is vital for the wide applications of materials to forge structures as-demand.Graphene-based macroscopic materials have shown excellent mechanical and functional properties.However,different from usual polymers and metals,graphene solids exhibit limited deformability and processibility for precise forming.Here,we present a precise thermoplastic forming of graphene materials by polymer intercalation from graphene oxide(GO)precursor.The intercalated polymer enables the thermoplasticity of GO solids by thermally activated motion of polymer chains.We detect a critical minimum containing of intercalated polymer that can expand the interlayer spacing exceeding 1.4 nm to activate thermoplasticity,which becomes the criteria for thermal plastic forming of GO solids.By thermoplastic forming,the flat GO-composite films are forged to Gaussian curved shapes and imprinted to have surface relief patterns with size precision down to 360 nm.The plastic-formed structures maintain the structural integration with outstanding electrical(3.07×10^(5) S m^(−1))and thermal conductivity(745.65 W m^(−1) K^(−1))after removal of polymers.The thermoplastic strategy greatly extends the forming capability of GO materials and other layered materials and promises versatile structural designs for more broad applications.
文摘In this article Florian Puchtler at affiliation‘University of Bayreuth’,Josef Breu at affiliation‘University of Bayreuth’,and Ziliang Wu at affiliation‘Zhejiang University’was missing from the author Min Cao,Senping Liu,Qingli Zhu,Ya Wang,Jingyu Ma,Zeshen Li,Dan Chang,Enhui Zhu,Xin Ming,Florian Puchtler,Josef Breu,Ziliang Wu,Yingjun Liu,Yanqiu Jiang,Zhen Xu,Chao Gao list.