期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
Hydrophilic polyanionic hydrogel electrolyte for anti-freezing and bending resistant zinc-ion hybrid supercapacitors
1
作者 Xuejuan Wan Hangqi Song +3 位作者 zejia zhao Zuocai Zhang Jingwei Wang Junye Cheng 《Journal of Materiomics》 SCIE CSCD 2024年第6期1299-1307,共9页
Zinc-ion hybrid supercapacitors(ZHSCs)have been widely considered as promising candidates for flexible electrochemical energy storage devices.The key challenge is to develop hydrogel electrolytes with high hydrophilic... Zinc-ion hybrid supercapacitors(ZHSCs)have been widely considered as promising candidates for flexible electrochemical energy storage devices.The key challenge is to develop hydrogel electrolytes with high hydrophilicity,anti-freezing,bending resistance,and stable interface with electrodes.This study reported a hydrogel electrolyte system that can meet the above functions,in which the zincophilic and negatively charged SO_(3)^(−),migratable Na^(+),abundant hydrophilic functional groups,gum xanthan,and porous architecture could effectively promote the electrochemical performance of ZHSCs.ZHSCs with such hydrogel electrolytes not only exhibited good low-temperature performance but also showed excellent bending resistance ability.A high specific capacitance could be kept after a long air-working lifespan over 10,000 cycles under a wide operation voltage of 1.85 V at−10℃.Furthermore,flexible ZHSCs could maintain the capacitance retention of 93.18%even after continuous 500 bends at an angle of 180°.The designed hydrogel electrolytes could be also used for other electrochemical energy storage devices with anti-freezing and bending resistance by changing electrolyte salt. 展开更多
关键词 Zn-ion hybrid supercapacitors Polyanionic ANTI-FREEZING Bending resistance Porous architecture
原文传递
Hydrogen Ion Implantation Induced Cutting Behavior Variation in Plunge Cutting of the Monocrystalline Silicon 被引量:1
2
作者 zejia zhao E.V.Jelenkovic +2 位作者 Gaobo Xiao Zhuoxuan Zhuang Suet To 《Nanomanufacturing and Metrology》 2021年第4期209-215,共7页
In this study,surface modification of monocrystalline silicon with two doses of hydrogen ion implantation and the plunge cutting process were conducted to explore the influence of hydrogen ions on the cutting behavior... In this study,surface modification of monocrystalline silicon with two doses of hydrogen ion implantation and the plunge cutting process were conducted to explore the influence of hydrogen ions on the cutting behavior of silicon.The results show that ion implantation is capable of deteriorating or improving the machinability of silicon,depending on the implantation dose.More cleavages and a reduction of critical depth of cut(CDoC)were observed for the silicon with a low implantation dose in the cutting direction of<100>in comparison to bare silicon,while no cleavage and an increase of CDoC were achieved after implantation with a high dose in the same cutting direction.Besides,the ductile cutting and thrust forces of the silicon with the low dose are larger than the bare silicon,but the forces are significantly reduced for the silicon after the high dose of implantation.The variation of the cutting forces is due to the different required stresses to overcome ductile and fracture deformation of silicon. 展开更多
关键词 Hydrogen ion implantation Plunge cutting SILICON Critical depth of cut Cutting forces
原文传递
Superresolution imaging using superoscillatory diffractive neural networks
3
作者 Hang Chen Sheng Gao +4 位作者 Haiou Zhang zejia zhao Zhengyang Duan Gordon Wetzstein Xing Lin 《Advanced Photonics》 2024年第5期70-80,共11页
Optical superoscillation enables far-field superresolution imaging beyond diffraction limits.However,existing superoscillatory lenses for spatial superresolution imaging systems still confront critical performance lim... Optical superoscillation enables far-field superresolution imaging beyond diffraction limits.However,existing superoscillatory lenses for spatial superresolution imaging systems still confront critical performance limitations due to the lack of advanced design methods and limited design degree of freedom.Here,we propose an optical superoscillatory diffractive neural network(SODNN)that achieves spatial superresolution for imaging beyond the diffraction limit with superior optical performance.SODNN is constructed by utilizing diffractive layers for optical interconnections and imaging samples or biological sensors for nonlinearity.This modulates the incident optical field to create optical superoscillation effects in three-dimensional(3D)space and generate the superresolved focal spots.By optimizing diffractive layers with 3D optical field constraints under an incident wavelength size ofλ,we achieved a superoscillatory optical spot and needle with a full width at half-maximum of 0.407λat the far-field distance over 400λwithout sidelobes over the field of view and with a long depth of field over 10λ.Furthermore,the SODNN implements a multiwavelength and multifocus spot array that effectively avoids chromatic aberrations,achieving comprehensive performance improvement that surpasses the trade-off among performance indicators of conventional superoscillatory lens design methods.Our research work will inspire the development of intelligent optical instruments to facilitate the applications of imaging,sensing,perception,etc. 展开更多
关键词 superresolution imaging photonic neural networks optical superoscillation
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部