In order to found new dielectrics ceramics in tungsten bronze structure, unfilled tungsten bronze(TB) ceramics with nominal formula Ba4PrFe(0.5)Nb(9.5)O(30) were prepared by the solid state reaction method. Th...In order to found new dielectrics ceramics in tungsten bronze structure, unfilled tungsten bronze(TB) ceramics with nominal formula Ba4PrFe(0.5)Nb(9.5)O(30) were prepared by the solid state reaction method. The microstructure and dielectric properties were studied using powder X-ray diffraction, field emission scanning electron microscope, and variable temperature dielectric test system. The results show that the ceramics have a single phase and belong to the space group of P4bm with the cell of a = b = 12.4839(3) ?, c = 3.9409(5) ?, V = 614.192(2) ?3. The frequency dependent dielectrics properties show that the ceramics have a Debye-like relaxation at room temperature, while the temperature dependent dielectrics properties indicate that the ceramics are a relaxor and the relaxation is due to the nanopolars and oxygen vacancies. The ceramics have a potential application in electronic ceramics as temperature-stable multilayer ceramic capacitors.展开更多
Transverse stimulated Raman scattering (TSRS) gain coefficient in a large aperture 65% deu terated potassium dihydrogen phosphate (DKDP) is measured at 351 nm. The measurement involves the use of an optical fiber ...Transverse stimulated Raman scattering (TSRS) gain coefficient in a large aperture 65% deu terated potassium dihydrogen phosphate (DKDP) is measured at 351 nm. The measurement involves the use of an optical fiber sensor system to detect Raman scattering light in the DKDP crystal. A Raman scattering gain coefficient of 0. 109 cm/GW is obtained and will be used to set upper limit of the DKDP crystals in our laser fa cility to avoid the TSRS induced energy loss and laser damage. The effect of bulk damage on growth behavior of TSRS is also examined and it is found that bulk damage has little impact on the TSRS growth. Thus the influ ence of bulk damage on the measurement of TSRS gain coefficient can be ignored.展开更多
基金Funded by the National Natural Science Foundation of China(11564009)the Natural Science Foundation of Guangxi Province(2013GXNSFBA019230 and 2014GXNSFAA118350)the Open Founding of Guangxi Ministry-Province Jointly-Constructed Cultivation Base for State Key Laboratory of Processing for Nonferrous Metal and Featured Materials(13KF-17 and 15KF-12)
文摘In order to found new dielectrics ceramics in tungsten bronze structure, unfilled tungsten bronze(TB) ceramics with nominal formula Ba4PrFe(0.5)Nb(9.5)O(30) were prepared by the solid state reaction method. The microstructure and dielectric properties were studied using powder X-ray diffraction, field emission scanning electron microscope, and variable temperature dielectric test system. The results show that the ceramics have a single phase and belong to the space group of P4bm with the cell of a = b = 12.4839(3) ?, c = 3.9409(5) ?, V = 614.192(2) ?3. The frequency dependent dielectrics properties show that the ceramics have a Debye-like relaxation at room temperature, while the temperature dependent dielectrics properties indicate that the ceramics are a relaxor and the relaxation is due to the nanopolars and oxygen vacancies. The ceramics have a potential application in electronic ceramics as temperature-stable multilayer ceramic capacitors.
文摘Transverse stimulated Raman scattering (TSRS) gain coefficient in a large aperture 65% deu terated potassium dihydrogen phosphate (DKDP) is measured at 351 nm. The measurement involves the use of an optical fiber sensor system to detect Raman scattering light in the DKDP crystal. A Raman scattering gain coefficient of 0. 109 cm/GW is obtained and will be used to set upper limit of the DKDP crystals in our laser fa cility to avoid the TSRS induced energy loss and laser damage. The effect of bulk damage on growth behavior of TSRS is also examined and it is found that bulk damage has little impact on the TSRS growth. Thus the influ ence of bulk damage on the measurement of TSRS gain coefficient can be ignored.