Powder samples with nominal composition La0.6Sr0.1TexMnO3 (x = 0.00, 0.05, 0.10, 0.15, 0.20) were prepared using the sol-gel method with thermal treatment up to 1473 K. On the basis of powder X-ray diffraction (XRD...Powder samples with nominal composition La0.6Sr0.1TexMnO3 (x = 0.00, 0.05, 0.10, 0.15, 0.20) were prepared using the sol-gel method with thermal treatment up to 1473 K. On the basis of powder X-ray diffraction (XRD), thermogravimetric and magnetic measurements, it was found that almost all of the Te and a few of the Mn ions were lost from the samples when they were calcined at 1473 K. The reason for the Te loss and a quantitative phase analysis for the samples calcined at 1473 K are discussed in detail.展开更多
The variations of intrinsic coercivity and remanence of sintered Nd-Fe-B magnets with ultra-high intrinsic coercivity were investigated. The results showed that the intrinsic coercivity and remanence declined simultan...The variations of intrinsic coercivity and remanence of sintered Nd-Fe-B magnets with ultra-high intrinsic coercivity were investigated. The results showed that the intrinsic coercivity and remanence declined simultaneously with increasing temperature, but the squareness of the magnets has hardly been changed. The temperature coefficients of remanence (α) and coercivity (β) for the magnets were calculated by two different methods, and the variations of the temperature coefficients and the microstructure of sintered Nd-Fe-B magnets were analyzed. The temperature coefficients of remanence (α) and coercivity (β) for the sintered magnets are very small, and the existence of fine microstructure is necessary to obtain sintered Nd-Fe-B magnets with ultra-high intrinsic coercivity.展开更多
基金supported by the Natural Science Foundation of Hebei Province (No. E2011205083)the Key Item Science Foundation of Hebei Province, China (No.10965125D+3 种基金 No.08965108D)the National Natural Science Foundation of China (No.NSF-10774037No.10074013)the National High Technology Research and Development Program of China (No. 2007AA03Z100)
文摘Powder samples with nominal composition La0.6Sr0.1TexMnO3 (x = 0.00, 0.05, 0.10, 0.15, 0.20) were prepared using the sol-gel method with thermal treatment up to 1473 K. On the basis of powder X-ray diffraction (XRD), thermogravimetric and magnetic measurements, it was found that almost all of the Te and a few of the Mn ions were lost from the samples when they were calcined at 1473 K. The reason for the Te loss and a quantitative phase analysis for the samples calcined at 1473 K are discussed in detail.
基金the National HighTechnology Research and Development Program of China (No. 2007AA03Z438)the National Natural Science Foun-dation of China (No.50571028)the Beijing Municipal Science & Technology Commission, China (No. D0406002000091)
文摘The variations of intrinsic coercivity and remanence of sintered Nd-Fe-B magnets with ultra-high intrinsic coercivity were investigated. The results showed that the intrinsic coercivity and remanence declined simultaneously with increasing temperature, but the squareness of the magnets has hardly been changed. The temperature coefficients of remanence (α) and coercivity (β) for the magnets were calculated by two different methods, and the variations of the temperature coefficients and the microstructure of sintered Nd-Fe-B magnets were analyzed. The temperature coefficients of remanence (α) and coercivity (β) for the sintered magnets are very small, and the existence of fine microstructure is necessary to obtain sintered Nd-Fe-B magnets with ultra-high intrinsic coercivity.