We established a three-dimensional finite element model of the Anninghe-Zemuhe-Xiaojiang faults region using contact surfaces of different sizes to describe the spatial segmentation characteristics of the faults. Our ...We established a three-dimensional finite element model of the Anninghe-Zemuhe-Xiaojiang faults region using contact surfaces of different sizes to describe the spatial segmentation characteristics of the faults. Our model is based on constraints from GPS observations, models of the crust and upper mantle, precise earthquake locations, the tectonic stress field, the slip rate of the faults, and the rheology of the lithosphere in the Sichuan-Yunnan area. Considering the influence of strong earthquakes since A.D. 1327, we analyzed the main controlling factors of the characteristics of the strong earthquakes and also studied by numerical simulation the possible areas of future earthquake risk and their relationship with tectonic stress. The numerical results showed that the gravitational potential energy of the Qinghai-Tibet Plateau and the interaction of adjacent blocks are the main kinetic factors affecting the characteristics of the tectonic stress distribution. There appears to be some correspondence between the distribution of tectonic stress and the b value; however, we also found that some low b value locations correspond to regions of lower stress. This contradiction may be the result of some comprehensive factors, such as the release of strain energy caused by strong earthquakes.展开更多
There are clear differences in the electrical conductivities of the crustal granites of the Qinghai-Tibet Plateau.Because these granites are among the major rock types on the Qinghai-Tibet Plateau, it is very importan...There are clear differences in the electrical conductivities of the crustal granites of the Qinghai-Tibet Plateau.Because these granites are among the major rock types on the Qinghai-Tibet Plateau, it is very important to detect the electrical conductivity of granites under high temperatures and pressures to study the electrical conductivity structure of this area. Using impedance spectroscopy at a frequency range of 10.1–106 Hz, the electrical conductivity of the muscovite-granite collected from Yadong was investigated at a confining pressure of 1.0 GPa and temperatures ranging from 577 to 996 K, while the electrical conductivity of the biotite-granite collected from Lhasa was investigated at a pressure of 1.0 GPa and temperatures ranging from587 to 1382 K. The calculated activation enthalpies of the Yadong muscovite-granite sample is 0.92 eV in the low-temperature range(577–919 K) and 2.16 eV in the high-temperature range(919–996 K). The activation enthalpies of the Lhasa biotite-granite sample is 0.48 eV in the low-temperature range(587–990 K) and 2.06 eV in the high-temperature range(990–1382 K). The change in the activation enthalpies of the granites at different temperature ranges may be associated with the dehydration of the two samples. The electrical conductivities of the granite samples obtained in the laboratory using impedance spectroscopy correspond well with field observations conducted near the sampling points, both in terms of the actual conductivity values and the observed variations between the low-temperature and high-temperature regimes. This correlation of laboratory and field conductivities indicates that the conductivities of the crustal rocks in the two regions closely correspond to granite conductivities.We calculated the electrical conductivities of muscovite-granite and biotite-granite samples using the effective medium and HS boundary models. When applied to the crustal rocks of southern Tibet, the results of the geophysical conductivity profiles lie within the range of laboratory data. Thus, the electrical characteristics of the crustal rocks underlying the southern Qinghai-Tibet Plateau can largely be attributed to granites, with the large changes to high conductivities at increasing depths resulting from the dehydration of crustal rocks with granitic compositions.展开更多
基金supported by the National Science and Technology Program(Grant No.2012BAK15B01)China National Special Fund for Earthquake Scientific Research in Public Interest(Grant Nos.201008001 and 201308011)+1 种基金the"Basic Science Research Plan"of the Institute of Earthquake ScienceChina Earthquake Administration(Grant No.DQJB12C08)
文摘We established a three-dimensional finite element model of the Anninghe-Zemuhe-Xiaojiang faults region using contact surfaces of different sizes to describe the spatial segmentation characteristics of the faults. Our model is based on constraints from GPS observations, models of the crust and upper mantle, precise earthquake locations, the tectonic stress field, the slip rate of the faults, and the rheology of the lithosphere in the Sichuan-Yunnan area. Considering the influence of strong earthquakes since A.D. 1327, we analyzed the main controlling factors of the characteristics of the strong earthquakes and also studied by numerical simulation the possible areas of future earthquake risk and their relationship with tectonic stress. The numerical results showed that the gravitational potential energy of the Qinghai-Tibet Plateau and the interaction of adjacent blocks are the main kinetic factors affecting the characteristics of the tectonic stress distribution. There appears to be some correspondence between the distribution of tectonic stress and the b value; however, we also found that some low b value locations correspond to regions of lower stress. This contradiction may be the result of some comprehensive factors, such as the release of strain energy caused by strong earthquakes.
基金supported by the National Natural Science Foundation of China (Grant No. 41374095)the Chinese Academy of Sciences/State Administration of Foreign Experts Affairs International Partnership Program Creative Research team (Grant No. KZZD-EW-TZ19)the Fundamental Research Funds of the China Earthquake Administration (Grant No. DQJB16B06)
文摘There are clear differences in the electrical conductivities of the crustal granites of the Qinghai-Tibet Plateau.Because these granites are among the major rock types on the Qinghai-Tibet Plateau, it is very important to detect the electrical conductivity of granites under high temperatures and pressures to study the electrical conductivity structure of this area. Using impedance spectroscopy at a frequency range of 10.1–106 Hz, the electrical conductivity of the muscovite-granite collected from Yadong was investigated at a confining pressure of 1.0 GPa and temperatures ranging from 577 to 996 K, while the electrical conductivity of the biotite-granite collected from Lhasa was investigated at a pressure of 1.0 GPa and temperatures ranging from587 to 1382 K. The calculated activation enthalpies of the Yadong muscovite-granite sample is 0.92 eV in the low-temperature range(577–919 K) and 2.16 eV in the high-temperature range(919–996 K). The activation enthalpies of the Lhasa biotite-granite sample is 0.48 eV in the low-temperature range(587–990 K) and 2.06 eV in the high-temperature range(990–1382 K). The change in the activation enthalpies of the granites at different temperature ranges may be associated with the dehydration of the two samples. The electrical conductivities of the granite samples obtained in the laboratory using impedance spectroscopy correspond well with field observations conducted near the sampling points, both in terms of the actual conductivity values and the observed variations between the low-temperature and high-temperature regimes. This correlation of laboratory and field conductivities indicates that the conductivities of the crustal rocks in the two regions closely correspond to granite conductivities.We calculated the electrical conductivities of muscovite-granite and biotite-granite samples using the effective medium and HS boundary models. When applied to the crustal rocks of southern Tibet, the results of the geophysical conductivity profiles lie within the range of laboratory data. Thus, the electrical characteristics of the crustal rocks underlying the southern Qinghai-Tibet Plateau can largely be attributed to granites, with the large changes to high conductivities at increasing depths resulting from the dehydration of crustal rocks with granitic compositions.