The number of therapeutic monoclonal antibodies used in clinical trials has recently increased dramatically, leading to the development of optimized downstream purification processes[1]. Staphylococcal protein A (SPA...The number of therapeutic monoclonal antibodies used in clinical trials has recently increased dramatically, leading to the development of optimized downstream purification processes[1]. Staphylococcal protein A (SPA), a cell-wall protein of Staphylococcus aureus, has been developed as a universal ligand for immunoglobulin G (IgG) purification because it binds specifically to the Fc portion of the IgG molecule of many mammals[2]. However, certain characteristics of SPA severely restrict the advancement of the antibody industry.展开更多
基金supported by grants from the National High Technology Research and Development Program of China(863 Program)(No.2012AA020304)the National Natural Science Foundation of China(Grant No.31300643)the Innovation Fund for Postgraduate Students from the Simcere Pharmaceutical Company(No.02704051)
文摘The number of therapeutic monoclonal antibodies used in clinical trials has recently increased dramatically, leading to the development of optimized downstream purification processes[1]. Staphylococcal protein A (SPA), a cell-wall protein of Staphylococcus aureus, has been developed as a universal ligand for immunoglobulin G (IgG) purification because it binds specifically to the Fc portion of the IgG molecule of many mammals[2]. However, certain characteristics of SPA severely restrict the advancement of the antibody industry.