In recent years,photocatalytic N_(2) reduction for ammonia synthesis at room temperature and atmospheric pressure has gradually become a research hotspot,exhibiting extremely high development potential.However,the low...In recent years,photocatalytic N_(2) reduction for ammonia synthesis at room temperature and atmospheric pressure has gradually become a research hotspot,exhibiting extremely high development potential.However,the low photogenerated charge separation efficiency and the lack of effective active sites seriously constrain the reaction efficiencies of semiconductor photocatalysts for N_(2) reduction of ammonia synthesis.Therefore,the rational design of catalytic materials is the key to enhance the photocatalytic N_(2) reduction reaction of ammonia synthesis.Transition metal Ru as the active center not only accelerates the adsorption and activation of N_(2) molecules,but also has good selectivity for N_(2) reduction.Moreover,the interaction between the metal and the support can effectively regulate the electronic structure of the active site,accelerate the photogenerated electron transfer,and significantly enhance the photocatalytic activity.Based on this,this review systematically investigates the Ru co-semiconductors to realize efficient photocatalytic N_(2) reduction for ammonia synthesis,and introduces its basic principles.Specifically,the Ru co-semiconductor photocatalytic material systems are introduced,such as TiO2-based,g-C3N4-based,and metal oxide materials,including the design of catalysts,crystal structures,and other characteristics.In addition,the modification strategies of photocatalytic N_(2) reduction ammonia synthesis materials are also presented,including loading/doping,defect engineering,construction of heterojunctions,and crystal surface modulation.Furthermore,the progress and shortcomings of the application of Ru co-semiconductors in these processes are summarized and comprehensively discussed,and the future outlook of Ru co-semiconductors in photocatalytic N_(2) reduction ammonia synthesis applications is proposed.展开更多
利用卫星重力技术监测全球陆地水储量变化(TWSC)兼具重要的实用价值和科学研究意义。基于GRACE(Gravity recovery and climate experiment)时变重力场模型研究了2002—2020年全球部分流域水储量变化,并探讨了气候和人为因素对区域水储...利用卫星重力技术监测全球陆地水储量变化(TWSC)兼具重要的实用价值和科学研究意义。基于GRACE(Gravity recovery and climate experiment)时变重力场模型研究了2002—2020年全球部分流域水储量变化,并探讨了气候和人为因素对区域水储量变化的影响。研究结果显示:地理区域相近流域的水储量时间序列具有相似的周期和振幅,而位于南北半球的临近流域水储量变化则呈现了相反的周期信号;墨累-达令流域内的水储量受到降水和蒸发共同影响,而印度河-恒河流域由于过度抽取地下水造成流域水储量不断下降;亚马逊流域内的GARCE和GLDAS (Global land data assimilation systems)反演水储量变化的相关性达到0.86,同时发现GRACE在探测区域干旱事件方面有独特的优势。展开更多
Icing on the surface of aircraft will not only aggravate its quality and affect flight control,but even cause safety accidents,which is one of the important factors restricting all-weather flight.Bio-inspired anti-ici...Icing on the surface of aircraft will not only aggravate its quality and affect flight control,but even cause safety accidents,which is one of the important factors restricting all-weather flight.Bio-inspired anti-icing surfaces have gained great attention recently due to their low-hysteresis,non-stick properties,slow nucleation rate and low ice adhesion strength.These bio-inspired anti-icing surfaces,such as superhydrophobic surfaces,slippery liquid-infused porous surfaces and quasi-liquid film surfaces,have realized excellent anti-icing performance at various stages of icing.However,for harsh environment,there are still many problems and challenges.From the perspective of bioinspiration,the mechanism of icing nucleation,liquid bounce and ice adhesion has been reviewed together with the application progress and bottleneck issues about anti-icing in view of the process of icing.Subsequently,the reliability and development prospect of active,passive and active-passive integrated anti-icing technology are discussed,respectively.展开更多
基金supported by Taishan Scholars Foundation of Shandong province(tsqn 201909058)。
文摘In recent years,photocatalytic N_(2) reduction for ammonia synthesis at room temperature and atmospheric pressure has gradually become a research hotspot,exhibiting extremely high development potential.However,the low photogenerated charge separation efficiency and the lack of effective active sites seriously constrain the reaction efficiencies of semiconductor photocatalysts for N_(2) reduction of ammonia synthesis.Therefore,the rational design of catalytic materials is the key to enhance the photocatalytic N_(2) reduction reaction of ammonia synthesis.Transition metal Ru as the active center not only accelerates the adsorption and activation of N_(2) molecules,but also has good selectivity for N_(2) reduction.Moreover,the interaction between the metal and the support can effectively regulate the electronic structure of the active site,accelerate the photogenerated electron transfer,and significantly enhance the photocatalytic activity.Based on this,this review systematically investigates the Ru co-semiconductors to realize efficient photocatalytic N_(2) reduction for ammonia synthesis,and introduces its basic principles.Specifically,the Ru co-semiconductor photocatalytic material systems are introduced,such as TiO2-based,g-C3N4-based,and metal oxide materials,including the design of catalysts,crystal structures,and other characteristics.In addition,the modification strategies of photocatalytic N_(2) reduction ammonia synthesis materials are also presented,including loading/doping,defect engineering,construction of heterojunctions,and crystal surface modulation.Furthermore,the progress and shortcomings of the application of Ru co-semiconductors in these processes are summarized and comprehensively discussed,and the future outlook of Ru co-semiconductors in photocatalytic N_(2) reduction ammonia synthesis applications is proposed.
文摘利用卫星重力技术监测全球陆地水储量变化(TWSC)兼具重要的实用价值和科学研究意义。基于GRACE(Gravity recovery and climate experiment)时变重力场模型研究了2002—2020年全球部分流域水储量变化,并探讨了气候和人为因素对区域水储量变化的影响。研究结果显示:地理区域相近流域的水储量时间序列具有相似的周期和振幅,而位于南北半球的临近流域水储量变化则呈现了相反的周期信号;墨累-达令流域内的水储量受到降水和蒸发共同影响,而印度河-恒河流域由于过度抽取地下水造成流域水储量不断下降;亚马逊流域内的GARCE和GLDAS (Global land data assimilation systems)反演水储量变化的相关性达到0.86,同时发现GRACE在探测区域干旱事件方面有独特的优势。
基金financially supported by the National Natural Science Foundation of China(Nos.T2121003,51725501,51935001,52205297).
文摘Icing on the surface of aircraft will not only aggravate its quality and affect flight control,but even cause safety accidents,which is one of the important factors restricting all-weather flight.Bio-inspired anti-icing surfaces have gained great attention recently due to their low-hysteresis,non-stick properties,slow nucleation rate and low ice adhesion strength.These bio-inspired anti-icing surfaces,such as superhydrophobic surfaces,slippery liquid-infused porous surfaces and quasi-liquid film surfaces,have realized excellent anti-icing performance at various stages of icing.However,for harsh environment,there are still many problems and challenges.From the perspective of bioinspiration,the mechanism of icing nucleation,liquid bounce and ice adhesion has been reviewed together with the application progress and bottleneck issues about anti-icing in view of the process of icing.Subsequently,the reliability and development prospect of active,passive and active-passive integrated anti-icing technology are discussed,respectively.