Solid superacid SO_(4)^(2−)/ZrO_(2)as heterogeneous catalyst was prepared to upgrade the bio-oil in the progress of hydrother-mal liquefaction(HTL)for the represented algae of Chlorella vulgaris and Enteromorpha proli...Solid superacid SO_(4)^(2−)/ZrO_(2)as heterogeneous catalyst was prepared to upgrade the bio-oil in the progress of hydrother-mal liquefaction(HTL)for the represented algae of Chlorella vulgaris and Enteromorpha prolifera.The solid superacid catalyst could obviously adjust the composition of the bio-oil and improve the higher heating values(HHVs).The catalytic performance could be regulated by adjusting the acid amount and acid strength of SO_(4)^(2−)/ZrO_(2).Furthermore,it was explored the catalytic effects of SO_(4)^(2−)/ZrO_(2)by the HTL for algae major model components,including polysaccharides,proteins,lipids,binary mixture and ternary mixture.The results showed that the introducing of SO_(4)^(2−)/ZrO_(2)catalyst could increase the yields of bio-oil from proteins and lipids,and avoid the Maillard reaction between polysaccharides and proteins.Moreover,a possible reaction pathway and mechanisms has proposed for the formation of bio-oils from HTL of algae catalyzed by SO_(4)^(2−)/ZrO_(2)based on the systematic research of the producing bio-oil from major model components.展开更多
基金supported by the Shandong Provincial Natural Science Foundation,China(No.ZR2019BB 033)the Fundamental Research Funds for the Central Universities of Ocean University of China(No.201813031).
文摘Solid superacid SO_(4)^(2−)/ZrO_(2)as heterogeneous catalyst was prepared to upgrade the bio-oil in the progress of hydrother-mal liquefaction(HTL)for the represented algae of Chlorella vulgaris and Enteromorpha prolifera.The solid superacid catalyst could obviously adjust the composition of the bio-oil and improve the higher heating values(HHVs).The catalytic performance could be regulated by adjusting the acid amount and acid strength of SO_(4)^(2−)/ZrO_(2).Furthermore,it was explored the catalytic effects of SO_(4)^(2−)/ZrO_(2)by the HTL for algae major model components,including polysaccharides,proteins,lipids,binary mixture and ternary mixture.The results showed that the introducing of SO_(4)^(2−)/ZrO_(2)catalyst could increase the yields of bio-oil from proteins and lipids,and avoid the Maillard reaction between polysaccharides and proteins.Moreover,a possible reaction pathway and mechanisms has proposed for the formation of bio-oils from HTL of algae catalyzed by SO_(4)^(2−)/ZrO_(2)based on the systematic research of the producing bio-oil from major model components.