When tunnels are constructed at shallow depths in areas with poor geological conditions,such as portal sections,valleys and hillsides in regions with granitic bedrock,considerable excavation-induced deformation of the...When tunnels are constructed at shallow depths in areas with poor geological conditions,such as portal sections,valleys and hillsides in regions with granitic bedrock,considerable excavation-induced deformation of the surrounding rock may occur,potentially resulting in tunnel collapses.The main reason for these problems is the lack of understanding of the deformation mechanism and evolution of the soft granitic rock surrounding the tunnel and the adoption of inappropriate construction technology and methods.This article analyzes the deformation mechanism of the rock surrounding a shallow tunnel based on in situ monitoring data as a case study and suggests that certain measures should be taken to effectively control the deformation of the surrounding rock and to minimize the potential for tunnel collapse.The results show that the deformation of the granitic soil surrounding the tunnel can be divided into three stages:the rapid deformation stage,the slow deformation stage and the stabilization stage.Appropriate construction methods should be carefully selected to ensure safety during tunnel excavation in the first stage.To avoid secondary disasters caused by tunnel collapses,three treatment measures may be implemented as part of safety management:enhancing the monitoring of the surrounding rock deformation,adjusting the construction methods and optimizing the support systems.In particular,accurate monitoring data and timely information feedback play a vital role in tunnel construction.Therefore,engineers with considerable engineering experience and professional knowledge are needed to analyze the monitoring data and make accurate predictions of tunnel deformation to ensure that reasonable measures are taken in the process of shallow tunnel excavation.展开更多
A new type of drainage channel with an energy dissipation structure has been proposed based on previous engineering experiences and practical requirements for hazard mitigation in earthquakeaffected areas.Experimental...A new type of drainage channel with an energy dissipation structure has been proposed based on previous engineering experiences and practical requirements for hazard mitigation in earthquakeaffected areas.Experimental studies were performed to determine the characteristics of viscous debris flow in a drainage channel of this type with a slope of 15%.The velocity and depth of the viscous debris flow were measured,processed,and subsequently used to characterize the viscous debris flow in the drainage channel.Observations of this experiment showed that the surface of the viscous debris flow in a smooth drainage channel was smoother than that of a similar debris flow passing through the energy dissipation section in a channel of the new type studied here.However,the flow patterns in the two types of channels were similar at other points.These experimental results show that the depth of the viscous debris flow downstream of the energy dissipation structure increased gradually with the length of the energy dissipation structure.In addition,in the smooth channel,the viscous debris-flow velocity downstream of the energy dissipation structure decreased gradually with the length of the energy dissipation structure.Furthermore,theviscous debris-flow depth and velocity were slightly affected by variations in the width of the energy dissipation structure when the channel slope was 15%.Finally,the energy dissipation ratio increased gradually as the length and width of the energy dissipation structure increased;the maximum energy dissipation ratio observed was 62.9%(where B = 0.6m and L/w = 6.0).展开更多
Forestry has played an important role in hazard mitigation associated with debris flows.Most forest mitigation measures refer to the experience of soil and water conservation,which disregard the destructive effect of ...Forestry has played an important role in hazard mitigation associated with debris flows.Most forest mitigation measures refer to the experience of soil and water conservation,which disregard the destructive effect of debris flows,causing potentially serious consequences.Determination of the effect of a forest on reducing debris-flow velocity and even stopping debris flows requires distinguishing between when the debris flow will destroy the forest and when the trees will withstand the debris-flow impact force.In this paper,we summarized two impact failure models of a single tree: stem breakage and overturning.The influences of different tree sizes characteristics(stem base diameter,tree weight,and root failure radius) and debris-flow characteristics(density,velocity,flow depth,and boulder diameter) on tree failure were analyzed.The observations obtained from the model adopted in this study show that trees are more prone to stem breakage than overturning.With an increase in tree size,the ability to resist stem breakage and overturning increases.Debris-flow density influences the critical failure conditions of trees substantially less than the debrisflow velocity,depth,and boulder diameter.The application conditions of forests in debris-flow hazard mitigation were proposed based on the analysis of the model results.The proposed models were applied in the Xiajijiehaizi Gully as a case study,and the results explain the destruction of trees in the forest dispersing zone.This work provides references for implementing forest measures for debris-flow hazard mitigation.展开更多
Field experiments were conducted under artificial rainfalls to investigate the processes of soil failures on slope.It is found that the failures were temporally discontinuous and spatially discrete,with a wide range o...Field experiments were conducted under artificial rainfalls to investigate the processes of soil failures on slope.It is found that the failures were temporally discontinuous and spatially discrete,with a wide range of magnitudes,accompanied by variations of soil moisture and pore-water pressure.Specifically,the experiments indicate that soil failures are more likely to occur on slope with high content of fine particles;the pore-pressure varies in response to soil failures in that the failures evidently affect the pore of the underlying soil.Migration of fine particles from upper to lower part of the slope also impacts the pore-water pressure variations in the slope profile.It is concluded that soil heterogeneity has a significant effect on variation in pore-water pressure,and fine particles transportation influences the building of pore-water pressure,as well as the mass depth,initial porosity,which is key to understanding the spatial characteristics of slope failures.展开更多
To accurately predict impact loads can ensure the safe operation of debris flow control projects.The instantaneous impact process is usually considered in the calculation of the debris flow impact force;however,the re...To accurately predict impact loads can ensure the safe operation of debris flow control projects.The instantaneous impact process is usually considered in the calculation of the debris flow impact force;however,the redistribution of an impact load after structural regulation is unclear.In this study we deduced the theoretical calculation of a debris flow impact on a double-row slit dam,and carried out a verification experiment on the debris flow impact.The calculation model considers the influence of the debris flow properties,dam arrangement and pile material.The results show that the impact force of the debris flow is obviously affected by the bulk density.When the bulk density is 21 kg/m^(3),the maximum impact force on the pile dam is 1.15 times that when the bulk density is 15 kg/m^(3),but the time it takes for the debris flow to pass through the dam body is reduced by 60%.The larger the relative pile spacing,the more sufficient the flow space and the lower the maximum impact force.The maximum impact force of relative pile spacing of 0.8 is 12%less than that of elative pile spacing of 0.5.The horizontal distribution of the impact force in the mud depth range is parabolic.The maximum impact force on the centre pier is 1.3 times that of a side pier,and the maximum impact force on the dam body appears at the top of the mud depth range.From the vertical distribution of the impact force,the maximum impact force at the highest mud mark is approximately 70%of that of the bottom.With the increase in the relative pile spacing,the longitudinal maximum impact force distribution first decreases and then increases.展开更多
Check dams are the most commonly used engineering measure for debris flow control worldwide.The scour and siltation characteristics between dams are important factors affecting dam design.In this study,classical dimen...Check dams are the most commonly used engineering measure for debris flow control worldwide.The scour and siltation characteristics between dams are important factors affecting dam design.In this study,classical dimensional analysis of the variables that influence the development of gully bed scour and siltation was carried out.Flume experiments were conducted to examine the influence characteristics of opening width,flume slope,debris flow density,and opening rate on the characteristics of gully bed scour and siltation.The influential characteristics of variables on the dimensionless scour depth,scour length,siltation length,scour volume and siltation volume were obtained.The experiments showed that,with an increase in the relative opening from 1.5 to 2.5,scour depth increased by 7.4%,scour length decreased by 11.2%,siltation length increased by 22.0%,scour volume decreased by 4.7%and siltation volume increased by 22.0%.With an increase in flume gradient from 0.105 to 0.213,scour depth,siltation length and siltation volume increased by 40.0%,65.9%and 65.9%,respectively,and scour length decreased by 20.1%.With an increase in sediment concentration from 0.303 to 0.545,siltation length and siltation volume increased by 15.4%and 15.4%,respectively,and scour depth,scour length and scour volume decreased by 9.6%,9.1%and 17.8%,respectively.As opening rate increased from 0.08 to 0.32,siltation length and siltation volume increased by 33.3%and 33.3%,respectively,and scour depth,scour length and scour volume decreased by 5.4%,13.7%and 18.4%,respectively.The results showed that the flume gradient was the most influential factor on scour depth,scour length,siltation length and siltation volume,and the sediment concentration was the most influential factor on scour volume.Then,according to the experimental data,some empirical formulas predicting scour depth,scour length,siltation length,scour volume and siltation volume were obtained.The error between the computed values according to the formulas in this paper and the observed values was within±10%.These research results may provide a technological basis for window dam design in debris flow disaster prevention and mitigation.展开更多
The debris flow dam is a common type of barrier dams,which shows significant differences from other types of barrier dam such as landslide dam,moraine dam in their formation processes,dam body shapes,and internal comp...The debris flow dam is a common type of barrier dams,which shows significant differences from other types of barrier dam such as landslide dam,moraine dam in their formation processes,dam body shapes,and internal compositions.The basic breaching parameters such as flood peak discharge are vital indicators of risk assessment.In this study,we elucidated the failure process of the debris flow dam through the flume experiment,and built the calculation equation of the breaching parameters by selecting critical factors.The result shows that the overtopping failure process of the debris flow dam is capable of forming significantly retrogressive scarps,and the failure process experiences three stages,the formation of the retrogressive scarp,the erosion of the retrogressive scarp,and the decline of the retrogressive scarp.Five factors used for establishing the calculation equations for peak discharge(Qp),final width(Wb)of the breach,and duration(T)of the debris flow dam failure are dam height(h),reservoir capacity(V),the fine grain content(P0.075)of the soil,the nonuniformity coefficient(Cu)of the soil,and the upper limit grain size(D90)of the soil,respectively.In the three equations,the correlation coefficients between Qp,Wb,T and the five factors were 0.86,0.70,0.63,respectively.The equations still need to be modified and verified in actual cases.展开更多
Damage to rural buildings in mountainous regions caused by flash floods accounts for a significant proportion of economic losses from disasters.The unreinforced masonry(URM)wall is the most vulnerable structural eleme...Damage to rural buildings in mountainous regions caused by flash floods accounts for a significant proportion of economic losses from disasters.The unreinforced masonry(URM)wall is the most vulnerable structural element of rural buildings exposed to flash floods.The failure of a URM wall indicates damage to rural buildings in flash floods.Based on the yield line theory of out-of-plane damage of URM walls and the virtual work method,brittle failure criteria for URM walls under the impact of flash floods were established.According to the field investigation data of the 26 June 2020 flash flood event in Damawu Gully and the corresponding simulation results of FLO-2D,the disaster-causing process was analysed,and the failure criteria were validated.Three building parameters were identified to influence the flood-resistance of URM walls,including the mortar grade,the span-to-height ratio of the wall,and the number of floors of the rural building.The results showed that the cause of the 26June disaster was the diversion of a 50-year flash flood into the residential community on the alluvial fan.The affected buildings were constructed with hollow blocks and lacked flood-resistance reinforcement.The critical failure depth of a URM wall restrained at the top by ring beams(RBs)under hydrostatic load conditions is 1.17 to 1.20 times greater than that of a URM wall without RBs,and the difference is even more pronounced when lowerstrength mortar is used.The flood-resistance of a URM wall constructed with Mb 7.5 mortar and restrained by RBs is almost as strong as that of a URM wall constructed with Mb 20 mortar and without RBs.The span-to-height ratio of a URM wall should not be greater than 1.875 in this case.However,the flood-resistance of a URM wall with RB restraint is almost independent of the span-to-height ratio.The brittle fracture energy of masonry mortar is more crucial to the flood-resistance of 4-edge restrained URM walls if L/Z>1.875.The flood-resistance of the URM wall of the first storey increases linearly with the number of floors.Single-storey rural buildings should be given priority to the use of high-grade masonry mortar and high-density blocks to improve flood-resistance.The failure criteria and the influence laws of building parameters on the flood-resistance of URM walls can provide references for flash flood mitigation and flood-resistance reinforcement of rural buildings in mountainous regions of Southwest China.展开更多
[Objective] To analyze the volatile flavor compounds in mutton of different parts of Ningxia Tan sheep. [Method] The volatile flavor compounds in mutton were identified and quantified using the solid phase micro-extra...[Objective] To analyze the volatile flavor compounds in mutton of different parts of Ningxia Tan sheep. [Method] The volatile flavor compounds in mutton were identified and quantified using the solid phase micro-extraction (SPME) method combined with GC-MS analysis. [ Re- sult ] The proportion of aldehydes in volatile compounds was the highest in the mutton of most parts of Ningxia Tan sheep, but no 4-methyl acid and 4-methyl nonyl acid was detected in the mutton. [ Conclusion]Aldehydes may be important for the volatile flavor of mutton of Ningxia Tan sheep. The study provides a basis for better development and use of Ningxia Tan sheep.展开更多
基金supported by the Project of Science and Technology Research and Development Plan of China Railway (Grant No. P2018G045)the Open Fund of Key Laboratory of Mountain Hazards and Earth Surface Processes, Chinese Academy of Sciencesthe Open Fund of Hunan International Scientific and Technological Innovation Cooperation Base of Advanced Construction and Maintenance Technology of Highway (Changsha University of Science & Technology) (Grant No. kfj190803)。
文摘When tunnels are constructed at shallow depths in areas with poor geological conditions,such as portal sections,valleys and hillsides in regions with granitic bedrock,considerable excavation-induced deformation of the surrounding rock may occur,potentially resulting in tunnel collapses.The main reason for these problems is the lack of understanding of the deformation mechanism and evolution of the soft granitic rock surrounding the tunnel and the adoption of inappropriate construction technology and methods.This article analyzes the deformation mechanism of the rock surrounding a shallow tunnel based on in situ monitoring data as a case study and suggests that certain measures should be taken to effectively control the deformation of the surrounding rock and to minimize the potential for tunnel collapse.The results show that the deformation of the granitic soil surrounding the tunnel can be divided into three stages:the rapid deformation stage,the slow deformation stage and the stabilization stage.Appropriate construction methods should be carefully selected to ensure safety during tunnel excavation in the first stage.To avoid secondary disasters caused by tunnel collapses,three treatment measures may be implemented as part of safety management:enhancing the monitoring of the surrounding rock deformation,adjusting the construction methods and optimizing the support systems.In particular,accurate monitoring data and timely information feedback play a vital role in tunnel construction.Therefore,engineers with considerable engineering experience and professional knowledge are needed to analyze the monitoring data and make accurate predictions of tunnel deformation to ensure that reasonable measures are taken in the process of shallow tunnel excavation.
基金supported by the Key Deployment Project of Chinese Academy of Sciences (Grant No.KZZD-EW-05-01)the National Natural Science Foundation of China (Grant No.41302283)the West Light Foundation of Chinese Academy of Sciences
文摘A new type of drainage channel with an energy dissipation structure has been proposed based on previous engineering experiences and practical requirements for hazard mitigation in earthquakeaffected areas.Experimental studies were performed to determine the characteristics of viscous debris flow in a drainage channel of this type with a slope of 15%.The velocity and depth of the viscous debris flow were measured,processed,and subsequently used to characterize the viscous debris flow in the drainage channel.Observations of this experiment showed that the surface of the viscous debris flow in a smooth drainage channel was smoother than that of a similar debris flow passing through the energy dissipation section in a channel of the new type studied here.However,the flow patterns in the two types of channels were similar at other points.These experimental results show that the depth of the viscous debris flow downstream of the energy dissipation structure increased gradually with the length of the energy dissipation structure.In addition,in the smooth channel,the viscous debris-flow velocity downstream of the energy dissipation structure decreased gradually with the length of the energy dissipation structure.Furthermore,theviscous debris-flow depth and velocity were slightly affected by variations in the width of the energy dissipation structure when the channel slope was 15%.Finally,the energy dissipation ratio increased gradually as the length and width of the energy dissipation structure increased;the maximum energy dissipation ratio observed was 62.9%(where B = 0.6m and L/w = 6.0).
基金supported by the National Natural Science Foundation of China (Grant No.41925030)the Strategic Priority Research Program of the Chinese Academy of Sciences (Grant No.XDA23090403)+2 种基金the Youth Innovation Promotion Association of the CAS (Grant No.2017426)the National Natural Science Foundation of China (Grant No.51709259)the CAS “Light of West China” Program。
文摘Forestry has played an important role in hazard mitigation associated with debris flows.Most forest mitigation measures refer to the experience of soil and water conservation,which disregard the destructive effect of debris flows,causing potentially serious consequences.Determination of the effect of a forest on reducing debris-flow velocity and even stopping debris flows requires distinguishing between when the debris flow will destroy the forest and when the trees will withstand the debris-flow impact force.In this paper,we summarized two impact failure models of a single tree: stem breakage and overturning.The influences of different tree sizes characteristics(stem base diameter,tree weight,and root failure radius) and debris-flow characteristics(density,velocity,flow depth,and boulder diameter) on tree failure were analyzed.The observations obtained from the model adopted in this study show that trees are more prone to stem breakage than overturning.With an increase in tree size,the ability to resist stem breakage and overturning increases.Debris-flow density influences the critical failure conditions of trees substantially less than the debrisflow velocity,depth,and boulder diameter.The application conditions of forests in debris-flow hazard mitigation were proposed based on the analysis of the model results.The proposed models were applied in the Xiajijiehaizi Gully as a case study,and the results explain the destruction of trees in the forest dispersing zone.This work provides references for implementing forest measures for debris-flow hazard mitigation.
基金supported by the National Natural Science Foundation(Grant No.41301008 and 41471011)supported by the Key Laboratory of Mountain Hazards and Earth Surface Processes and,CAS,and China Meteorological Administration(2014-6)
文摘Field experiments were conducted under artificial rainfalls to investigate the processes of soil failures on slope.It is found that the failures were temporally discontinuous and spatially discrete,with a wide range of magnitudes,accompanied by variations of soil moisture and pore-water pressure.Specifically,the experiments indicate that soil failures are more likely to occur on slope with high content of fine particles;the pore-pressure varies in response to soil failures in that the failures evidently affect the pore of the underlying soil.Migration of fine particles from upper to lower part of the slope also impacts the pore-water pressure variations in the slope profile.It is concluded that soil heterogeneity has a significant effect on variation in pore-water pressure,and fine particles transportation influences the building of pore-water pressure,as well as the mass depth,initial porosity,which is key to understanding the spatial characteristics of slope failures.
基金funded by the Second Scientific Expedition to Qinghai-Tibet Plateau (Grant No.2019QZKK0902)the National Natural Science Foundation of China (Grant No.42201095)+2 种基金the Natural Science Foundation of Sichuan (Grant No.2022NSFSC1032)the Sichuan Provincial Transportation Science and Technology Project (2021-A-08)the Key science and technology projects of transportation industry (2021-MS4-104)
文摘To accurately predict impact loads can ensure the safe operation of debris flow control projects.The instantaneous impact process is usually considered in the calculation of the debris flow impact force;however,the redistribution of an impact load after structural regulation is unclear.In this study we deduced the theoretical calculation of a debris flow impact on a double-row slit dam,and carried out a verification experiment on the debris flow impact.The calculation model considers the influence of the debris flow properties,dam arrangement and pile material.The results show that the impact force of the debris flow is obviously affected by the bulk density.When the bulk density is 21 kg/m^(3),the maximum impact force on the pile dam is 1.15 times that when the bulk density is 15 kg/m^(3),but the time it takes for the debris flow to pass through the dam body is reduced by 60%.The larger the relative pile spacing,the more sufficient the flow space and the lower the maximum impact force.The maximum impact force of relative pile spacing of 0.8 is 12%less than that of elative pile spacing of 0.5.The horizontal distribution of the impact force in the mud depth range is parabolic.The maximum impact force on the centre pier is 1.3 times that of a side pier,and the maximum impact force on the dam body appears at the top of the mud depth range.From the vertical distribution of the impact force,the maximum impact force at the highest mud mark is approximately 70%of that of the bottom.With the increase in the relative pile spacing,the longitudinal maximum impact force distribution first decreases and then increases.
基金the Second Scientific Expedition to Qinghai-Tibet Plateau(Grant No.2019QZKK0902)the National Research and Development Program of China(Grant No.2020YFD1100701)the Strategic Priority Research Program of Chinese Academy of Sciences(Grant No.XDA23090403)。
文摘Check dams are the most commonly used engineering measure for debris flow control worldwide.The scour and siltation characteristics between dams are important factors affecting dam design.In this study,classical dimensional analysis of the variables that influence the development of gully bed scour and siltation was carried out.Flume experiments were conducted to examine the influence characteristics of opening width,flume slope,debris flow density,and opening rate on the characteristics of gully bed scour and siltation.The influential characteristics of variables on the dimensionless scour depth,scour length,siltation length,scour volume and siltation volume were obtained.The experiments showed that,with an increase in the relative opening from 1.5 to 2.5,scour depth increased by 7.4%,scour length decreased by 11.2%,siltation length increased by 22.0%,scour volume decreased by 4.7%and siltation volume increased by 22.0%.With an increase in flume gradient from 0.105 to 0.213,scour depth,siltation length and siltation volume increased by 40.0%,65.9%and 65.9%,respectively,and scour length decreased by 20.1%.With an increase in sediment concentration from 0.303 to 0.545,siltation length and siltation volume increased by 15.4%and 15.4%,respectively,and scour depth,scour length and scour volume decreased by 9.6%,9.1%and 17.8%,respectively.As opening rate increased from 0.08 to 0.32,siltation length and siltation volume increased by 33.3%and 33.3%,respectively,and scour depth,scour length and scour volume decreased by 5.4%,13.7%and 18.4%,respectively.The results showed that the flume gradient was the most influential factor on scour depth,scour length,siltation length and siltation volume,and the sediment concentration was the most influential factor on scour volume.Then,according to the experimental data,some empirical formulas predicting scour depth,scour length,siltation length,scour volume and siltation volume were obtained.The error between the computed values according to the formulas in this paper and the observed values was within±10%.These research results may provide a technological basis for window dam design in debris flow disaster prevention and mitigation.
基金supported by the National Natural Science Foundation of China(Grant Nos.U20A20112,U19A2049)Second Tibetan Plateau Scientific Expedition and Research Program(STEP)(Grant No.2019QZKK0904)CAS Light of West China Program。
文摘The debris flow dam is a common type of barrier dams,which shows significant differences from other types of barrier dam such as landslide dam,moraine dam in their formation processes,dam body shapes,and internal compositions.The basic breaching parameters such as flood peak discharge are vital indicators of risk assessment.In this study,we elucidated the failure process of the debris flow dam through the flume experiment,and built the calculation equation of the breaching parameters by selecting critical factors.The result shows that the overtopping failure process of the debris flow dam is capable of forming significantly retrogressive scarps,and the failure process experiences three stages,the formation of the retrogressive scarp,the erosion of the retrogressive scarp,and the decline of the retrogressive scarp.Five factors used for establishing the calculation equations for peak discharge(Qp),final width(Wb)of the breach,and duration(T)of the debris flow dam failure are dam height(h),reservoir capacity(V),the fine grain content(P0.075)of the soil,the nonuniformity coefficient(Cu)of the soil,and the upper limit grain size(D90)of the soil,respectively.In the three equations,the correlation coefficients between Qp,Wb,T and the five factors were 0.86,0.70,0.63,respectively.The equations still need to be modified and verified in actual cases.
基金funded by the National Key R&D Program of China(Grant No.2018YFD1100401)the National Natural Science Foundation of China(Grant No.41925030)+3 种基金the National Natural Science Foundation of China(Grant No.42007270)the Sichuan Science and Technology Program(Grant No.2019YJ0009)the Youth Innovation Promotion Association CAS(2022379)the Chinese Academy of Sciences(CAS)Light of West China Program。
文摘Damage to rural buildings in mountainous regions caused by flash floods accounts for a significant proportion of economic losses from disasters.The unreinforced masonry(URM)wall is the most vulnerable structural element of rural buildings exposed to flash floods.The failure of a URM wall indicates damage to rural buildings in flash floods.Based on the yield line theory of out-of-plane damage of URM walls and the virtual work method,brittle failure criteria for URM walls under the impact of flash floods were established.According to the field investigation data of the 26 June 2020 flash flood event in Damawu Gully and the corresponding simulation results of FLO-2D,the disaster-causing process was analysed,and the failure criteria were validated.Three building parameters were identified to influence the flood-resistance of URM walls,including the mortar grade,the span-to-height ratio of the wall,and the number of floors of the rural building.The results showed that the cause of the 26June disaster was the diversion of a 50-year flash flood into the residential community on the alluvial fan.The affected buildings were constructed with hollow blocks and lacked flood-resistance reinforcement.The critical failure depth of a URM wall restrained at the top by ring beams(RBs)under hydrostatic load conditions is 1.17 to 1.20 times greater than that of a URM wall without RBs,and the difference is even more pronounced when lowerstrength mortar is used.The flood-resistance of a URM wall constructed with Mb 7.5 mortar and restrained by RBs is almost as strong as that of a URM wall constructed with Mb 20 mortar and without RBs.The span-to-height ratio of a URM wall should not be greater than 1.875 in this case.However,the flood-resistance of a URM wall with RB restraint is almost independent of the span-to-height ratio.The brittle fracture energy of masonry mortar is more crucial to the flood-resistance of 4-edge restrained URM walls if L/Z>1.875.The flood-resistance of the URM wall of the first storey increases linearly with the number of floors.Single-storey rural buildings should be given priority to the use of high-grade masonry mortar and high-density blocks to improve flood-resistance.The failure criteria and the influence laws of building parameters on the flood-resistance of URM walls can provide references for flash flood mitigation and flood-resistance reinforcement of rural buildings in mountainous regions of Southwest China.
基金funded by the Key Technology R&D Program of Ningxia Hui Autonomous Region
文摘[Objective] To analyze the volatile flavor compounds in mutton of different parts of Ningxia Tan sheep. [Method] The volatile flavor compounds in mutton were identified and quantified using the solid phase micro-extraction (SPME) method combined with GC-MS analysis. [ Re- sult ] The proportion of aldehydes in volatile compounds was the highest in the mutton of most parts of Ningxia Tan sheep, but no 4-methyl acid and 4-methyl nonyl acid was detected in the mutton. [ Conclusion]Aldehydes may be important for the volatile flavor of mutton of Ningxia Tan sheep. The study provides a basis for better development and use of Ningxia Tan sheep.