期刊文献+
共找到3篇文章
< 1 >
每页显示 20 50 100
论民事纠纷相对性解决原则 被引量:25
1
作者 张卫平 《比较法研究》 CSSCI 北大核心 2022年第2期89-103,共15页
民事纠纷是当事人之间就民事权利义务关系发生的争议。民事纠纷一旦纳入民事诉讼程序,其争议的解决通常就是法院在特定的当事人之间,就当事人主张的权利和相应事实范围内,对其事实的确认和对权利义务作出裁判,其裁判的效力是相对的,事... 民事纠纷是当事人之间就民事权利义务关系发生的争议。民事纠纷一旦纳入民事诉讼程序,其争议的解决通常就是法院在特定的当事人之间,就当事人主张的权利和相应事实范围内,对其事实的确认和对权利义务作出裁判,其裁判的效力是相对的,事实认定也是相对的,也就构成了所谓的纠纷相对性解决原则。纠纷相对性解决原则是对民事纠纷通过诉讼程序解决的一般情形的一种表达。这一原则不仅体现了民事纠纷的特点,反映了民事诉讼法处分原则的要求,也是法律思维和法律推理逻辑特点的体现和反映。以这一原则对民事诉讼实践活动进行审视,可以发现人们在解决民事纠纷时,往往没有顾忌这一原则,纠纷一次性解决、穿透式审判等实践活动都可能存在跨界越边的情形。从纠纷相对性解决原则这一视角还可以发现人们实践中的所谓裁判预决效、同案同判或类案同判等习以为常的概念所存在的问题。因此,充分认识这一原则有助于人们理解和把握民事诉讼中纠纷解决的规律,认真对待民事纠纷解决中的特殊情形,为其设置相应的条件,构建有利于符合民事纠纷特点的诉讼制度。 展开更多
关键词 处分原则 判决效力 既判力 纠纷一次性解决 穿透式审判 同案同判
原文传递
η-INVARIANT AND CHERN-SIMONS CURRENT 被引量:2
2
作者 zhangweiping 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2005年第1期45-56,共12页
The author presents an alternate proof of the Bismut-Zhang localization formula of η invariants, when the target manifold is a sphere, by using ideas of mod k index theory instead of the difficult analytic localizati... The author presents an alternate proof of the Bismut-Zhang localization formula of η invariants, when the target manifold is a sphere, by using ideas of mod k index theory instead of the difficult analytic localization techniques of Bismut-Lebeau. As a consequence, it is shown that the R/Z part of the analytically defined η invariant of Atiyah-Patodi-Singer for a Dirac operator on an odd dimensional closed spin manifold can be expressed purely geometrically through a stable Chern-Simons current on a higher dimensional sphere. As a preliminary application, the author discusses the relation with the Atiyah-Patodi-Singer R/Z index theorem for unitary flat vector bundles, and proves an R refinement in the case where the Dirac operator is replaced by the Signature operator. 展开更多
关键词 Direct image η-Invariant Chern-Simons current mod k index theorem
原文传递
SUB-SIGNATURE OPERATORS,η-INVARIANTS AND A RIEMANN-ROCH THEOREM FOR FLAT VECTOR BUNDLES 被引量:1
3
作者 zhangweiping 《Chinese Annals of Mathematics,Series B》 SCIE CSCD 2004年第1期7-36,共30页
The author presents an extension of the Atiyah-Patodi-Singer invariant for unitary representations [2,3] to the non-unitary case, as well as to the case where the base manifold admits certain finer structures. In part... The author presents an extension of the Atiyah-Patodi-Singer invariant for unitary representations [2,3] to the non-unitary case, as well as to the case where the base manifold admits certain finer structures. In particular, when the base manifold has a fibration structure, a Riemann-Roch theorem for these invariants is established by computing the adiabatic limits of the associated η-invariants. 展开更多
关键词 Sub-signature operators η-Invariants Flat vector bundles Riemann-Roch
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部