Running safety assessment and tracking irregularity parametric sensitivity analysis of high-speed maglev train-bridge system are of great concern,especially need perfect refinement models in which all properties can b...Running safety assessment and tracking irregularity parametric sensitivity analysis of high-speed maglev train-bridge system are of great concern,especially need perfect refinement models in which all properties can be well characterized based on various stochastic excitations.A three-dimensional refined spatial random vibration analysis model of high-speed maglev train-bridge coupled system is established in this paper,in which multi-source uncertainty excitation can be considered simultaneously,and the probability density evolution method(PDEM)is adopted to reveal the system-specific uncertainty dynamic characteristic.The motion equation of the maglev vehicle model is composed of multi-rigid bodies with a total 210-degrees of freedom for each vehicle,and a refined electromagnetic force-air gap model is used to account for the interaction and coupling effect between the moving train and track beam bridges,which are directly established by using finite element method.The model is proven to be applicable by comparing with Monte Carlo simulation.By applying the proposed stochastic framework to the high maglev line,the random dynamic responses of maglev vehicles running on the bridges are studied for running safety and stability assessment.Moreover,the effects of track irregularity wavelength range under different amplitude and running speeds on the coupled system are investigated.The results show that the augmentation of train speed will move backward the sensitive wavelength interval,and track irregularity amplitude influences the response remarkably in the sensitive interval.展开更多
Using the Jisan Coalmine's top-coal caving for the 3down coal seam with ascending mining as the project background, the air-leakage characteristics of the goaf wasanalyzed. Through data fitting of the in situ obse...Using the Jisan Coalmine's top-coal caving for the 3down coal seam with ascending mining as the project background, the air-leakage characteristics of the goaf wasanalyzed. Through data fitting of the in situ observation, the models of gas seepage, diffusion and air-leakage in the goaf were established in ascending mining. The ComputationFluid Dynamics software Fluent was used to simulate the air-leakage law of the goaf. Theresults of the numerical simulation provide a basis for the use of the technology of ventilation and fire prevention in the working face of an ascending mining, which ensures thesafety in production in the working face of the top-coal caving for 3_down coal seam in theJisan Coalmine.展开更多
基金Project(2023YFB4302500)supported by the National Key R&D Program of ChinaProject(52078485)supported by the National Natural Science Foundation of ChinaProjects(2021-Major-16,2021-Special-08)supported by the Science and Technology Research and Development Program Project of China Railway Group Limited。
文摘Running safety assessment and tracking irregularity parametric sensitivity analysis of high-speed maglev train-bridge system are of great concern,especially need perfect refinement models in which all properties can be well characterized based on various stochastic excitations.A three-dimensional refined spatial random vibration analysis model of high-speed maglev train-bridge coupled system is established in this paper,in which multi-source uncertainty excitation can be considered simultaneously,and the probability density evolution method(PDEM)is adopted to reveal the system-specific uncertainty dynamic characteristic.The motion equation of the maglev vehicle model is composed of multi-rigid bodies with a total 210-degrees of freedom for each vehicle,and a refined electromagnetic force-air gap model is used to account for the interaction and coupling effect between the moving train and track beam bridges,which are directly established by using finite element method.The model is proven to be applicable by comparing with Monte Carlo simulation.By applying the proposed stochastic framework to the high maglev line,the random dynamic responses of maglev vehicles running on the bridges are studied for running safety and stability assessment.Moreover,the effects of track irregularity wavelength range under different amplitude and running speeds on the coupled system are investigated.The results show that the augmentation of train speed will move backward the sensitive wavelength interval,and track irregularity amplitude influences the response remarkably in the sensitive interval.
文摘建立了食品中常见的黄曲霉毒素B1(AFB1)、黄曲霉毒素B2(AFB2)、黄曲霉毒素G1(AFG1)、黄曲霉毒素G2(AFG2)、赭曲霉毒素A(OTA)、赭曲霉毒素B(OTB)和赭曲霉毒素C(OTC) 7种真菌毒素的QuEChERS前处理净化结合液相色谱-串联质谱(LC-MS/MS)检测方法。样品用甲酸-乙腈(10∶90)进行酸化稀释,离心后取上清液经吸附净化剂(1. 2 g MgSO4+0. 25 g C18+0. 4 g PSA+0. 25 g Al-N)富集净化,过滤后采用LC-MS/MS在多反应监测(MRM)模式下测定。7种真菌毒素在各自范围内线性良好,相关系数(r)均不小于0. 999。在最佳条件下,方法的定量下限(LOQ)为0. 25~5. 0μg/kg,7种毒素的相对标准偏差(RSD,n=6)为1. 1%~7. 7%,平均回收率为71. 5%~119%。该方法操作方便、灵敏度高、重现性好,能满足大批量食品中上述7种真菌毒素残留的检测要求。
基金Supported by the National Natural Science Foundation of China(50704025)the National Science Fundation of Education Department in Shaanxi Province(07JK318)the Planning Project of Excellent Talented Person of New Century Supported by Ministry of Education of China (NECT050874)
文摘Using the Jisan Coalmine's top-coal caving for the 3down coal seam with ascending mining as the project background, the air-leakage characteristics of the goaf wasanalyzed. Through data fitting of the in situ observation, the models of gas seepage, diffusion and air-leakage in the goaf were established in ascending mining. The ComputationFluid Dynamics software Fluent was used to simulate the air-leakage law of the goaf. Theresults of the numerical simulation provide a basis for the use of the technology of ventilation and fire prevention in the working face of an ascending mining, which ensures thesafety in production in the working face of the top-coal caving for 3_down coal seam in theJisan Coalmine.