To prolong the service lifetime of hot-section components used in marine environment at elevated tem-peratures,it is crucial to explore and develop high-temperature corrosion-resistant coatings.High-velocity oxygen fu...To prolong the service lifetime of hot-section components used in marine environment at elevated tem-peratures,it is crucial to explore and develop high-temperature corrosion-resistant coatings.High-velocity oxygen fuel(HVOF)sprayed NiCoCrAlY,Pt-modified NiCoCrAlY and pre-oxidized Pt-modified NiCoCrAlY coatings were prepared and investigated.This study is concerned with the performance of three coat-ings in a simulated marine environment based on the phase composition of corrosion products and mi-crostructure evolution of coating samples combined with first-principles density functional theory.The results show that the NiCoCrAlY coating was subject to accelerated corrosion and extensive aluminum depletion,leading to premature coating failure.The high-temperature corrosion resistance of Pt-modified NiCoCrAlY coating was found to be better than that of NiCoCrAlY coating.In contrast,the pre-oxidized Pt-modified NiCoCrAlY coating offered long-lasting protection and exhibited the best corrosion resistance,which is attributed to the positive synergistic effect between Pt modification and pre-oxidation.展开更多
A low-diffusion Ni Re Pt Al coating((Ni,Pt)Al outer layer in addition to a Re-rich diffusion barrier layer)was prepared on a Ni_(3)Al-base single crystal(SC)superalloy via electroplating and gaseous aluminizing treatm...A low-diffusion Ni Re Pt Al coating((Ni,Pt)Al outer layer in addition to a Re-rich diffusion barrier layer)was prepared on a Ni_(3)Al-base single crystal(SC)superalloy via electroplating and gaseous aluminizing treatments,wherein the electroplating procedures consisted of the composite deposition of Ni-Re followed by electroplating of Pt.In order to perform a comparison with conventional Ni Al and(Ni,Pt)Al coatings,the cyclic oxidation performance of the Ni Re Pt Al coating was evaluated at 1100 and 1150℃.We observed that the oxidation resistance of the Ni Re Pt Al coating was significantly improved by the greater presence of the residualβ-Ni Al phase in the outer layer and the lesser outward-diffusion of Mo from the substrate.In addition,the coating with the Re-rich diffusion barrier demonstrated a lower extent of interdiffusion into the substrate,where the thickness of the second reaction zone(SRZ)in the substrate alloy decreased by 25%.The mechanisms responsible for improving the oxidation resistance and decreasing the extent of SRZ formation are discussed,in which a particular attention is paid to the inhibition of the outward diffusion of Mo by the Re-based diffusion barrier.展开更多
Initial oxidation behavior of NiCoCrAlY coating prepared by arc-ion plating has been studied in air at 900, 1000 and 1100 ℃. The results showed that phase transformation from transient θ-Al_(2)O_(3) to α-Al_(2)O_(3...Initial oxidation behavior of NiCoCrAlY coating prepared by arc-ion plating has been studied in air at 900, 1000 and 1100 ℃. The results showed that phase transformation from transient θ-Al_(2)O_(3) to α-Al_(2)O_(3) was highly related to the temperature and oxidation time. The oxide scale in the initial stage was mainly composed of θ-Al_(2)O_(3) at 900 ℃. Instead, more amount of α-Al_(2)O_(3) emerged out with increasing oxidation temperature. The elemental distribution after oxidation confirmed that faster chromium diffusion to the oxide scale played an important role in the speedy transformation from θ-Al_(2)O_(3) to α-Al_(2)O_(3). Y segregation at scale/coating interface resulted in less cavity formation and hence improved the oxide scale adherence.展开更多
基金supported by the National Science and Technology Major Project(No.J2019-IV-0006-0074)the Key Research Program of the Chinese Academy of Sciences(No.ZDRW-CN-2021-2-2)+2 种基金the National Natural Science Foundation of China(No.52301116)support by the Joint Funds of the National Natural Science Foundation of China(“Ye Qisun”Science Funds,No.U2241251)the Innovation Engineering Project(No.211-XXXX-N106-01).
文摘To prolong the service lifetime of hot-section components used in marine environment at elevated tem-peratures,it is crucial to explore and develop high-temperature corrosion-resistant coatings.High-velocity oxygen fuel(HVOF)sprayed NiCoCrAlY,Pt-modified NiCoCrAlY and pre-oxidized Pt-modified NiCoCrAlY coatings were prepared and investigated.This study is concerned with the performance of three coat-ings in a simulated marine environment based on the phase composition of corrosion products and mi-crostructure evolution of coating samples combined with first-principles density functional theory.The results show that the NiCoCrAlY coating was subject to accelerated corrosion and extensive aluminum depletion,leading to premature coating failure.The high-temperature corrosion resistance of Pt-modified NiCoCrAlY coating was found to be better than that of NiCoCrAlY coating.In contrast,the pre-oxidized Pt-modified NiCoCrAlY coating offered long-lasting protection and exhibited the best corrosion resistance,which is attributed to the positive synergistic effect between Pt modification and pre-oxidation.
基金the Key-Area Research and Development Program of Guangdong Province(2019B010936001)financially supported by the National Natural Science Foundation of China(Grant Nos.51671202 and 51301184)。
文摘A low-diffusion Ni Re Pt Al coating((Ni,Pt)Al outer layer in addition to a Re-rich diffusion barrier layer)was prepared on a Ni_(3)Al-base single crystal(SC)superalloy via electroplating and gaseous aluminizing treatments,wherein the electroplating procedures consisted of the composite deposition of Ni-Re followed by electroplating of Pt.In order to perform a comparison with conventional Ni Al and(Ni,Pt)Al coatings,the cyclic oxidation performance of the Ni Re Pt Al coating was evaluated at 1100 and 1150℃.We observed that the oxidation resistance of the Ni Re Pt Al coating was significantly improved by the greater presence of the residualβ-Ni Al phase in the outer layer and the lesser outward-diffusion of Mo from the substrate.In addition,the coating with the Re-rich diffusion barrier demonstrated a lower extent of interdiffusion into the substrate,where the thickness of the second reaction zone(SRZ)in the substrate alloy decreased by 25%.The mechanisms responsible for improving the oxidation resistance and decreasing the extent of SRZ formation are discussed,in which a particular attention is paid to the inhibition of the outward diffusion of Mo by the Re-based diffusion barrier.
基金sponsored by the R&D Program in Key Fields of Guangdong Province(No.2019B010936001)the National Natural Science Foundation of China(Grant No.51671202)+1 种基金supported by the National Engineering Laboratory for Marine and Ocean Engineering Power System-Laboratory for Ocean Engineering Gas Turbine。
文摘Initial oxidation behavior of NiCoCrAlY coating prepared by arc-ion plating has been studied in air at 900, 1000 and 1100 ℃. The results showed that phase transformation from transient θ-Al_(2)O_(3) to α-Al_(2)O_(3) was highly related to the temperature and oxidation time. The oxide scale in the initial stage was mainly composed of θ-Al_(2)O_(3) at 900 ℃. Instead, more amount of α-Al_(2)O_(3) emerged out with increasing oxidation temperature. The elemental distribution after oxidation confirmed that faster chromium diffusion to the oxide scale played an important role in the speedy transformation from θ-Al_(2)O_(3) to α-Al_(2)O_(3). Y segregation at scale/coating interface resulted in less cavity formation and hence improved the oxide scale adherence.