By using the fractional complex transform and the bifurcation theory to the generalized fractional differential mBBM equation, we first transform this fractional equation into a plane dynamic system, and then find its...By using the fractional complex transform and the bifurcation theory to the generalized fractional differential mBBM equation, we first transform this fractional equation into a plane dynamic system, and then find its equilibrium points and first integral. Based on this, the phase portraits of the corresponding plane dynamic system are given. According to the phase diagram characteristics of the dynamic system, the periodic solution corresponds to the limit cycle or periodic closed orbit. Therefore, according to the phase portraits and the properties of elliptic functions, we obtain exact explicit parametric expressions of smooth periodic wave solutions. This method can also be applied to other fractional equations.展开更多
The different height mass concentrations of dust aerosol data from the atmosphere environment observation station (Ta- zhong Station) was continuously observed by instruments of Grimm 1.108, Thermo RP 1400a and TSP ...The different height mass concentrations of dust aerosol data from the atmosphere environment observation station (Ta- zhong Station) was continuously observed by instruments of Grimm 1.108, Thermo RP 1400a and TSP from January of 2009 to February of 2010 in the Taklimakan Desert hinterland. Results show that: (1) The mass concentration value of 80 m PMl0 was higher, but PM2.5 and PM1.0 concentrations at 80 m was obviously lower than 4 m PMl0, and the value of 80 m PM1.0 mass concentration was the lowest. (2) The PM mass concentrations gradually decreased from night to sunrise, with the lowest concentration at 08:00, with the mass concentration gradually increased, up to the highest concentration around 18:00, and then decreased again. It was exactly the same with the changes of wind speed. (3) The high monthly average mass concentration of TSP mainly appeared from March to September, and the highest concentration was in April and May, subsequently gradually decreased. Also, March-September was a period with high value area of PM monthly average mass concentration, with the highest monthly average mass concentration of 846.0 p.g/m3 for 4 m PM^0 appeared in May. The concentration of PM10 was much higher than those of PM2.5 and PM1.0 at 80 m. There is a small difference between the concentration of PM2.5 and PM~ 0. Dust weather was the main factor which influenced the concentration content of the different diameter dust aerosol, and the more dust weather days, the higher content of coarse particle, conversely, fine particle was more. (4) The mass concentration of different diameter aerosols had the following sequence during dust weather: clear day 〈 blowing dust 〈 floating and blowing dust 〈 sandstorm. In different dust weather, the value of PM^o/TSP in fine weather was higher than that in floating weather, and much higher than those in blowing dust and sandstorm weather. (5) During the dust weather process, dust aerosol concentration gradually decreased with particle size decreasing. The dust aerosol mass concentration at different heights and diameter would have a peak value area every 3-4 days according to the strengthening process of dust weather.展开更多
During the course of a major sandstorm from April 17 to April 23, 2008 in the Taklimakan Desert, data pertaining to the mass concentrations of different-sized atmospheric particulate matter were observed continuously ...During the course of a major sandstorm from April 17 to April 23, 2008 in the Taklimakan Desert, data pertaining to the mass concentrations of different-sized atmospheric particulate matter were observed continuously with Grimm 1.108, Thermo RP 1400a, TSP, and CAWS-600 instruments. The results showed that: (1) during the entire sandstorm process there were some dif- ferences between the daily mean particle concentration peaks and the hourly mean particle concentration peaks because the actual sandstorm lasted for only about 4 hr, whereas more particles were accumulated in the floating dust days before and after the actual sandstorm; (2) the intensity of the sandstorm was enhanced with the increase of wind speed, and this was related to the peak mass concentrations of atmospheric particulate matter; the wind speed directly affected the concentration of atmospheric particulate matter: the higher the wind speed, the higher the mass concentration (〉0.23 μm was 39,496.5 μg/m^3, and 〉20.0 μm was 5,390.7μg/m^3); (3) the concentration changes of PM10 and TSP were also related to the course and intensity of the sandstorm; and (4) the mass concentration of atmospheric particulate matter had the following sequence during the dust weather: clear day 〈 floating dust 〈 floating and blowing dust 〈 sandstorm. Temperature, relative humidity, and barometric pressure are important factors affecting the strength of storms, which could also indirectly affect the concentration change of atmospheric particulate matter.展开更多
The air pollution in Urumqi which is located on the northern slope of the Tianshan Mountains in northwestern China,is very serious in winter.Of particular importance is the influence of terrain-induced shallow foehn,k...The air pollution in Urumqi which is located on the northern slope of the Tianshan Mountains in northwestern China,is very serious in winter.Of particular importance is the influence of terrain-induced shallow foehn,known locally as elevated southeasterly gale(ESEG).It usually modulates atmospheric boundary layer structure and wind field patterns and produces favorable meteorological conditions conducive to hazardous air pollution.During 2013-17,Urumqi had an average of 50 d yr-1 of heavy pollution(daily average PM2.5 concentration>150μg m-3),of which 41 days were in winter.The majority(71.4%)of heavy pollution processes were associated with the shallow foehn.Based on microwave radiometer,wind profiler,and surface observations,the surface meteorological fields and boundary layer evolution during the worst pollution episode in Urumqi during 16-23 February 2013 are investigated.The results illustrate the significant role of shallow foehn in the building,strengthening,and collapsing of temperature inversions.There were four wind field patterns corresponding to four different phases during the whole pollution event.The most serious pollution phase featured shallow foehn activity in the south of Urumqi city and the appearance of an intense inversion layer below 600 m.Intense convergence caused by foehn and mountain-valley winds was sustained during most of the phase,resulting in pollutants sinking downward to the lower boundary layer and accumulating around urban area.The key indicators of such events identified in this study are highly correlated to particulate matter concentrations and could be used to predict heavy pollution episodes in the feature.展开更多
Based on automatic continuous surface ozone concentration observation data from June 10, 2010 to March 20, 2012 in the Taklimakan Desert hinterland, combined with corresponding meteorological data, the temporal, seaso...Based on automatic continuous surface ozone concentration observation data from June 10, 2010 to March 20, 2012 in the Taklimakan Desert hinterland, combined with corresponding meteorological data, the temporal, seasonal and daily variation characteristics of surface ozone concentrations under different weather conditions were analyzed. At the same time, the main fac- tors affecting ozone variation are discussed. Results show that: (1) Daily variation of ozone concentration was characterized by one obvious peak, with gentle changes during the night and dramatic changes during the day. The lowest concentration was at 09:00 and the highest was at 18:00. Compared to urban areas, there was a slight time delay. (2) Ozone concentration variation had a weekend effect phenomenon. Weekly variation of ozone concentration decreased from Monday to Wednesday with the lowest in Wednesday, and increased after Thursday with the highest in Sunday. (3) The highest monthly average concentration was 89.6 I.tg/m3 in June 2010, and the lowest was 32.0 ~g/m3 in January 2012. Ozone concentration reduced month by month from June to December in 2010. (4) Ozone concentration in spring and summer was higher than in autumn and winter. The variation trend agreed with those in other large and medium-sized cities. (5) Under four different types of weather, daily ozone concentration var- ied most dramatically in sunny days, followed by slight variation in rain days, and varied gently in cloudy days. Ozone concentra- tion varied inconspicuously before a sandstorm appearance, and dropped rapidly at the onset of a sandstorm. (6) Daily variation of radiation was also characterized by a single peak, and the variation was significantly earlier than ozone concentration variation. Sun radiation intensity had a direct influence on the photochemical reaction speed, leading to variation of ozone concentration. (7) Daily average ozone concentration in dust weather was higher than in slight rain and clear days. The variation of near surface ozone concentration could also be affected by meteorological factors such as relative humidity, wind speed, wind direction and sunshine hours. Thus, numerous factors working together led to ozone pollution.展开更多
Based on Total Suspended Particulates (TSP) observations of Tazhong, Tikanli, Kashi and Minfeng in 2009, combined wa- ter-soluble inorganic ion analyses, this paper studied the spatial and temporal distribution of T...Based on Total Suspended Particulates (TSP) observations of Tazhong, Tikanli, Kashi and Minfeng in 2009, combined wa- ter-soluble inorganic ion analyses, this paper studied the spatial and temporal distribution of TSP in the Tarim Basin and analyzed concentration characteristics. The results are as follows: (1) monthly average TSP concentrations shows a similar trend in Tazhong, Tikanli, Kashi and Minfeng with peak values in April-May and low values in November-December. As for the quarter average mass concentration trends, spring has the highest value, followed by summer and autumn, and winter is the lowest; (2) total annual concentration trend of water-soluble inorganic ions in TSP is as follows: Tazhong 〉 Tikanli 〉 Minfeng 〉 Kashi. SO4^2- concentra- tions are 58%, 50%, 54% and 51% of total ion concentration; Ca^2+ concentrations are 13%, 16%, 16% and 11%; Na^+ concentra- tions are 12%, 13%, 10% and 12% and Cl^- concentrations are 12%, 16%, 11% and 22%, respectively. Therefore, sulfate, calcium, sodium and chloride ions are the main inorganic components of TSP in the Tarim Basin; (3) the correlation coefficients of anions and cations in Tikanli, Minfeng, Kashi and Tazhong are 0.99, 0.99, 0.25 and 0.91, respectively; the average anion concentrations are 2.57, 2.12, 2.15 and 3.02 times the average cation concentrations, indicating that ions were unbalanced; (4) SO4^2-/NO3^- ratio is much larger than the ratio of coal-fired emissions SO4^2-/NO3^-, thus the impact of fixed emission sources in the four regions on the atmosphere is far greater than that of mobile emission sources.展开更多
Nanoliposomes have a broad range of applications in the treatment of autoimmune inflammatory diseases because of their ability to considerably enhance drug transport.For their clinical application,nanoliposomes must b...Nanoliposomes have a broad range of applications in the treatment of autoimmune inflammatory diseases because of their ability to considerably enhance drug transport.For their clinical application,nanoliposomes must be able to realize on-demand release of drugs at disease sites to maximize drug-delivery efficacy and minimize side effects.Therefore,responsive drug-release strategies for inflammation treatment have been explored;however,no specific design has been realized for a responsive drug-delivery system based on pyroptosis-related inflammation.Herein,we report a pioneering strategy for self-adaptive pyroptosis-responsive liposomes(R8-cardiolipin-containing nanoliposomes encapsulating dimethyl fumarate,RC-NL@DMF)that pre-cisely release encapsulated anti-pyroptotic drugs into pyroptotic cells.The activated key pyroptotic protein,the N-terminal domain of gasdermin E,selectively integrates with the cardiolipin of liposomes,thus forming pores for controlled drug release,pyroptosis,and inflammation inhibition.Therefore,RC-NL@DMF exhibited effective therapeutic efficacies to alleviate autoimmune inflammatory damages in zymosan-induced arthritis mice and dextran sulfate sodium-induced inflammatory bowel disease mice.Our novel approach holds great promise for self-adaptive pyroptosis-responsive on-demand drug delivery,suppressing pyroptosis and treating autoimmune inflammatory diseases.展开更多
Comprehensive Summary HpnG plays a crucial role in the production of ribosylhopane,a key intermediate in the biosynthesis of bacteriohopanepolyol.Despite early extensive studies,the precise function of HpnG has remain...Comprehensive Summary HpnG plays a crucial role in the production of ribosylhopane,a key intermediate in the biosynthesis of bacteriohopanepolyol.Despite early extensive studies,the precise function of HpnG has remained elusive.Here,we report functional characterization of HpnG as a purine nucleoside phosphorylase,which converts adenosylhopane to phosphoribosylhopane in the presence of phosphate.HpnG demonstrates broad substrate specificity and impressive stability,making it a valuable enzymatic tool for applications in nucleoside processing and related biotechnology.展开更多
Summaryof main observation and conclusion Bacteriohopanepolyols are a group of triterpenoids that play important rolesin regulating bacterial cell membrane function.As an intermediate in bacteriohopanepolyol biosynthe...Summaryof main observation and conclusion Bacteriohopanepolyols are a group of triterpenoids that play important rolesin regulating bacterial cell membrane function.As an intermediate in bacteriohopanepolyol biosynthesis,adenosylhopane production is related to a putative Fe-S protein HpnH,but the exact role of this enzyme remains unsolved.Here we report characterization of HpnH as a novel radical S-adenosylmethionine(SAM)superfamily enzyme.In contrast to almost all the members in the superfamily,HpnH does not initiate the reaction by a hydrogen atom abstraction process.Instead,it catalyzes the adenosylation of hopene via a radical addition reaction to produce adenosylhopane,representing the second example of radical SAM-dependent adenosylation involved in natural product biosynthesis.展开更多
The radical S-adenosylmethinone(SAM)superfamily is currently the largest known enzyme superfamily that consists of more than 22000 members.[1]These enzymes utilize a[4Fe-4S]cluster to bind SAM and reductively cleave i...The radical S-adenosylmethinone(SAM)superfamily is currently the largest known enzyme superfamily that consists of more than 22000 members.[1]These enzymes utilize a[4Fe-4S]cluster to bind SAM and reductively cleave it to produce a highly reactive 5'-deoxyadenosyl(dAdo)radical.This alkyl radical abstracts a hydrogen atom from the substrate to produce 5'-deoxyadenosine(dAdoH)and a substrate radical,thereby initiating remarkably diverse reactions.[1]展开更多
In social network applications,individual opinion is often influenced by groups,and most decisions usually reflect the majority’s opinions.This imposes the group influence maximization(GIM) problem that selects k ini...In social network applications,individual opinion is often influenced by groups,and most decisions usually reflect the majority’s opinions.This imposes the group influence maximization(GIM) problem that selects k initial nodes,where each node belongs to multiple groups for a given social network and each group has a weight,to maximize the weight of the eventually activated groups.The GIM problem is apparently NP-hard,given the NP-hardness of the influence maximization(IM) problem that does not consider groups.Focusing on activating groups rather than individuals,this paper proposes the complementary maximum coverage(CMC) algorithm,which greedily and iteratively removes the node with the approximate least group influence until at most k nodes remain.Although the evaluation of the current group influence against each node is only approximate,it nevertheless ensures the success of activating an approximate maximum number of groups.Moreover,we also propose the improved reverse influence sampling(IRIS) algorithm through fine-tuning of the renowned reverse influence sampling algorithm for GIM.Finally,we carry out experiments to evaluate CMC and IRIS,demonstrating that they both outperform the baseline algorithms respective of their average number of activated groups under the independent cascade(IC)model.展开更多
Dear Editor,Intraoperative radiotherapy(IORT)is an accelerated par-tial breast irradiation(APBI)treatment that is accom-plished intraoperatively.Numerous clinical trials indicate that IORT is safe and effective,non-in...Dear Editor,Intraoperative radiotherapy(IORT)is an accelerated par-tial breast irradiation(APBI)treatment that is accom-plished intraoperatively.Numerous clinical trials indicate that IORT is safe and effective,non-inferior to standard whole-breast external beam radiotherapy(EBRT)for low-risk patients who receive breast-conserving surgery[1-3].Nevertheless,these studies mainly included non-Asians and thus lack adequate evidence to support the value of IORT in Asian patients with breast cancer.展开更多
文摘By using the fractional complex transform and the bifurcation theory to the generalized fractional differential mBBM equation, we first transform this fractional equation into a plane dynamic system, and then find its equilibrium points and first integral. Based on this, the phase portraits of the corresponding plane dynamic system are given. According to the phase diagram characteristics of the dynamic system, the periodic solution corresponds to the limit cycle or periodic closed orbit. Therefore, according to the phase portraits and the properties of elliptic functions, we obtain exact explicit parametric expressions of smooth periodic wave solutions. This method can also be applied to other fractional equations.
基金supported by Natural Science Founda-tion of China(Nos.41375162,41175017,41175140)China Special Fund for Meteorological Research in the Public Interest(Nos.GYHY201006012,GYHY201106025)
文摘The different height mass concentrations of dust aerosol data from the atmosphere environment observation station (Ta- zhong Station) was continuously observed by instruments of Grimm 1.108, Thermo RP 1400a and TSP from January of 2009 to February of 2010 in the Taklimakan Desert hinterland. Results show that: (1) The mass concentration value of 80 m PMl0 was higher, but PM2.5 and PM1.0 concentrations at 80 m was obviously lower than 4 m PMl0, and the value of 80 m PM1.0 mass concentration was the lowest. (2) The PM mass concentrations gradually decreased from night to sunrise, with the lowest concentration at 08:00, with the mass concentration gradually increased, up to the highest concentration around 18:00, and then decreased again. It was exactly the same with the changes of wind speed. (3) The high monthly average mass concentration of TSP mainly appeared from March to September, and the highest concentration was in April and May, subsequently gradually decreased. Also, March-September was a period with high value area of PM monthly average mass concentration, with the highest monthly average mass concentration of 846.0 p.g/m3 for 4 m PM^0 appeared in May. The concentration of PM10 was much higher than those of PM2.5 and PM1.0 at 80 m. There is a small difference between the concentration of PM2.5 and PM~ 0. Dust weather was the main factor which influenced the concentration content of the different diameter dust aerosol, and the more dust weather days, the higher content of coarse particle, conversely, fine particle was more. (4) The mass concentration of different diameter aerosols had the following sequence during dust weather: clear day 〈 blowing dust 〈 floating and blowing dust 〈 sandstorm. In different dust weather, the value of PM^o/TSP in fine weather was higher than that in floating weather, and much higher than those in blowing dust and sandstorm weather. (5) During the dust weather process, dust aerosol concentration gradually decreased with particle size decreasing. The dust aerosol mass concentration at different heights and diameter would have a peak value area every 3-4 days according to the strengthening process of dust weather.
基金supported by Natural Science Foundation of China (Nos. 41175017,41175140)Public Service sectors (meteorology) research and special funds by the Ministry of Science and Technology (Nos.GYHY201006012,GYHY201106025)
文摘During the course of a major sandstorm from April 17 to April 23, 2008 in the Taklimakan Desert, data pertaining to the mass concentrations of different-sized atmospheric particulate matter were observed continuously with Grimm 1.108, Thermo RP 1400a, TSP, and CAWS-600 instruments. The results showed that: (1) during the entire sandstorm process there were some dif- ferences between the daily mean particle concentration peaks and the hourly mean particle concentration peaks because the actual sandstorm lasted for only about 4 hr, whereas more particles were accumulated in the floating dust days before and after the actual sandstorm; (2) the intensity of the sandstorm was enhanced with the increase of wind speed, and this was related to the peak mass concentrations of atmospheric particulate matter; the wind speed directly affected the concentration of atmospheric particulate matter: the higher the wind speed, the higher the mass concentration (〉0.23 μm was 39,496.5 μg/m^3, and 〉20.0 μm was 5,390.7μg/m^3); (3) the concentration changes of PM10 and TSP were also related to the course and intensity of the sandstorm; and (4) the mass concentration of atmospheric particulate matter had the following sequence during the dust weather: clear day 〈 floating dust 〈 floating and blowing dust 〈 sandstorm. Temperature, relative humidity, and barometric pressure are important factors affecting the strength of storms, which could also indirectly affect the concentration change of atmospheric particulate matter.
基金supported by Central Scientific Research and Operational Project (IDM2020001)National Natural Science Foundation of China (Grant No. 41575011)China Desert Funds (Sqj2017013, Sqj2019004)
文摘The air pollution in Urumqi which is located on the northern slope of the Tianshan Mountains in northwestern China,is very serious in winter.Of particular importance is the influence of terrain-induced shallow foehn,known locally as elevated southeasterly gale(ESEG).It usually modulates atmospheric boundary layer structure and wind field patterns and produces favorable meteorological conditions conducive to hazardous air pollution.During 2013-17,Urumqi had an average of 50 d yr-1 of heavy pollution(daily average PM2.5 concentration>150μg m-3),of which 41 days were in winter.The majority(71.4%)of heavy pollution processes were associated with the shallow foehn.Based on microwave radiometer,wind profiler,and surface observations,the surface meteorological fields and boundary layer evolution during the worst pollution episode in Urumqi during 16-23 February 2013 are investigated.The results illustrate the significant role of shallow foehn in the building,strengthening,and collapsing of temperature inversions.There were four wind field patterns corresponding to four different phases during the whole pollution event.The most serious pollution phase featured shallow foehn activity in the south of Urumqi city and the appearance of an intense inversion layer below 600 m.Intense convergence caused by foehn and mountain-valley winds was sustained during most of the phase,resulting in pollutants sinking downward to the lower boundary layer and accumulating around urban area.The key indicators of such events identified in this study are highly correlated to particulate matter concentrations and could be used to predict heavy pollution episodes in the feature.
基金supported by Natural Science Foundation of China(Nos.41175017,41175140)China Special Fund for Meteorological Research in the Public Interest(Nos.GYHY201006012,GYHY201106025)
文摘Based on automatic continuous surface ozone concentration observation data from June 10, 2010 to March 20, 2012 in the Taklimakan Desert hinterland, combined with corresponding meteorological data, the temporal, seasonal and daily variation characteristics of surface ozone concentrations under different weather conditions were analyzed. At the same time, the main fac- tors affecting ozone variation are discussed. Results show that: (1) Daily variation of ozone concentration was characterized by one obvious peak, with gentle changes during the night and dramatic changes during the day. The lowest concentration was at 09:00 and the highest was at 18:00. Compared to urban areas, there was a slight time delay. (2) Ozone concentration variation had a weekend effect phenomenon. Weekly variation of ozone concentration decreased from Monday to Wednesday with the lowest in Wednesday, and increased after Thursday with the highest in Sunday. (3) The highest monthly average concentration was 89.6 I.tg/m3 in June 2010, and the lowest was 32.0 ~g/m3 in January 2012. Ozone concentration reduced month by month from June to December in 2010. (4) Ozone concentration in spring and summer was higher than in autumn and winter. The variation trend agreed with those in other large and medium-sized cities. (5) Under four different types of weather, daily ozone concentration var- ied most dramatically in sunny days, followed by slight variation in rain days, and varied gently in cloudy days. Ozone concentra- tion varied inconspicuously before a sandstorm appearance, and dropped rapidly at the onset of a sandstorm. (6) Daily variation of radiation was also characterized by a single peak, and the variation was significantly earlier than ozone concentration variation. Sun radiation intensity had a direct influence on the photochemical reaction speed, leading to variation of ozone concentration. (7) Daily average ozone concentration in dust weather was higher than in slight rain and clear days. The variation of near surface ozone concentration could also be affected by meteorological factors such as relative humidity, wind speed, wind direction and sunshine hours. Thus, numerous factors working together led to ozone pollution.
基金supported by Central Nonprofit Research Institutes Fundamental Research Funds for Project(No.IDM201003)Natural Science Foundation of China(Nos.41175017+1 种基金41175140)China Desert Meteorological Science Research Funds(Sqj2009014)
文摘Based on Total Suspended Particulates (TSP) observations of Tazhong, Tikanli, Kashi and Minfeng in 2009, combined wa- ter-soluble inorganic ion analyses, this paper studied the spatial and temporal distribution of TSP in the Tarim Basin and analyzed concentration characteristics. The results are as follows: (1) monthly average TSP concentrations shows a similar trend in Tazhong, Tikanli, Kashi and Minfeng with peak values in April-May and low values in November-December. As for the quarter average mass concentration trends, spring has the highest value, followed by summer and autumn, and winter is the lowest; (2) total annual concentration trend of water-soluble inorganic ions in TSP is as follows: Tazhong 〉 Tikanli 〉 Minfeng 〉 Kashi. SO4^2- concentra- tions are 58%, 50%, 54% and 51% of total ion concentration; Ca^2+ concentrations are 13%, 16%, 16% and 11%; Na^+ concentra- tions are 12%, 13%, 10% and 12% and Cl^- concentrations are 12%, 16%, 11% and 22%, respectively. Therefore, sulfate, calcium, sodium and chloride ions are the main inorganic components of TSP in the Tarim Basin; (3) the correlation coefficients of anions and cations in Tikanli, Minfeng, Kashi and Tazhong are 0.99, 0.99, 0.25 and 0.91, respectively; the average anion concentrations are 2.57, 2.12, 2.15 and 3.02 times the average cation concentrations, indicating that ions were unbalanced; (4) SO4^2-/NO3^- ratio is much larger than the ratio of coal-fired emissions SO4^2-/NO3^-, thus the impact of fixed emission sources in the four regions on the atmosphere is far greater than that of mobile emission sources.
基金sustained by the National Natural Science Foundation of China(82072512,52273152,22161132027)Zhejiang Provincial Natural Science Foundation of China(LY23H060013,LY21H070001,LY20H160044,LBY21H060003).
文摘Nanoliposomes have a broad range of applications in the treatment of autoimmune inflammatory diseases because of their ability to considerably enhance drug transport.For their clinical application,nanoliposomes must be able to realize on-demand release of drugs at disease sites to maximize drug-delivery efficacy and minimize side effects.Therefore,responsive drug-release strategies for inflammation treatment have been explored;however,no specific design has been realized for a responsive drug-delivery system based on pyroptosis-related inflammation.Herein,we report a pioneering strategy for self-adaptive pyroptosis-responsive liposomes(R8-cardiolipin-containing nanoliposomes encapsulating dimethyl fumarate,RC-NL@DMF)that pre-cisely release encapsulated anti-pyroptotic drugs into pyroptotic cells.The activated key pyroptotic protein,the N-terminal domain of gasdermin E,selectively integrates with the cardiolipin of liposomes,thus forming pores for controlled drug release,pyroptosis,and inflammation inhibition.Therefore,RC-NL@DMF exhibited effective therapeutic efficacies to alleviate autoimmune inflammatory damages in zymosan-induced arthritis mice and dextran sulfate sodium-induced inflammatory bowel disease mice.Our novel approach holds great promise for self-adaptive pyroptosis-responsive on-demand drug delivery,suppressing pyroptosis and treating autoimmune inflammatory diseases.
基金supported by grants from the National Key Research andDevelopmenttProgram(2018YFA0900402,2021YFA0910501)the National Natural Science Foundation of China(21921003,32270070,32270050,U22A20451)+1 种基金the Funding of Innovative Research Team of High-Level Local Universities in Shanghai and a key laboratory program of the Education Commission of Shanghai Municipality(ZDSYS14005)West Light Foundation of The Chinese Academy of Sciences(xbzg-zdsys-202105).
文摘Comprehensive Summary HpnG plays a crucial role in the production of ribosylhopane,a key intermediate in the biosynthesis of bacteriohopanepolyol.Despite early extensive studies,the precise function of HpnG has remained elusive.Here,we report functional characterization of HpnG as a purine nucleoside phosphorylase,which converts adenosylhopane to phosphoribosylhopane in the presence of phosphate.HpnG demonstrates broad substrate specificity and impressive stability,making it a valuable enzymatic tool for applications in nucleoside processing and related biotechnology.
基金This work is supported in part by grants from the National Key Research and Development Program(2016 Y F A0501302)from National Natural Science Foundation of China(31670060 to Q.Z.).We thank Wei Lu and Chuchu Guo for making the HpnH-and SHC-expression constructs.
文摘Summaryof main observation and conclusion Bacteriohopanepolyols are a group of triterpenoids that play important rolesin regulating bacterial cell membrane function.As an intermediate in bacteriohopanepolyol biosynthesis,adenosylhopane production is related to a putative Fe-S protein HpnH,but the exact role of this enzyme remains unsolved.Here we report characterization of HpnH as a novel radical S-adenosylmethionine(SAM)superfamily enzyme.In contrast to almost all the members in the superfamily,HpnH does not initiate the reaction by a hydrogen atom abstraction process.Instead,it catalyzes the adenosylation of hopene via a radical addition reaction to produce adenosylhopane,representing the second example of radical SAM-dependent adenosylation involved in natural product biosynthesis.
文摘The radical S-adenosylmethinone(SAM)superfamily is currently the largest known enzyme superfamily that consists of more than 22000 members.[1]These enzymes utilize a[4Fe-4S]cluster to bind SAM and reductively cleave it to produce a highly reactive 5'-deoxyadenosyl(dAdo)radical.This alkyl radical abstracts a hydrogen atom from the substrate to produce 5'-deoxyadenosine(dAdoH)and a substrate radical,thereby initiating remarkably diverse reactions.[1]
基金supported by the Natural Science Foundation of Fujian Province (No. 2020J01845)the Educational Research Project for Young and MiddleAged Teachers of Fujian Provincial Department of Education (No. JAT190613)+1 种基金the National Natural Science Foundation of China (Nos. 61772005 and 92067108)the Outstanding Youth Innovation Team Project for Universities of Shandong Province (No. 2020KJN008)。
文摘In social network applications,individual opinion is often influenced by groups,and most decisions usually reflect the majority’s opinions.This imposes the group influence maximization(GIM) problem that selects k initial nodes,where each node belongs to multiple groups for a given social network and each group has a weight,to maximize the weight of the eventually activated groups.The GIM problem is apparently NP-hard,given the NP-hardness of the influence maximization(IM) problem that does not consider groups.Focusing on activating groups rather than individuals,this paper proposes the complementary maximum coverage(CMC) algorithm,which greedily and iteratively removes the node with the approximate least group influence until at most k nodes remain.Although the evaluation of the current group influence against each node is only approximate,it nevertheless ensures the success of activating an approximate maximum number of groups.Moreover,we also propose the improved reverse influence sampling(IRIS) algorithm through fine-tuning of the renowned reverse influence sampling algorithm for GIM.Finally,we carry out experiments to evaluate CMC and IRIS,demonstrating that they both outperform the baseline algorithms respective of their average number of activated groups under the independent cascade(IC)model.
基金supported by the National Key Research and Development Program of China(Grant No.2019YFE0110000),Beijing Municipal Science&Technol-ogy Commission(D161100000816003),National Natural Science Foundation of China(Grant No.82072097),Clin-ical and Translational Medicine Research Foundation of Chinese Academy of Medical Sciences(Grant No.2020-I2M-C&T-B-069),the CAMS Initiative Fund for Medical Sciences(Grant No.2017-I2M-3-004),the Non-profit Central Research Institute Fund of Chinese Academy of Medical Sciences(Grant No.2018PT32013,2017PT32001 and 2016ZX310178),Beijing Hope Run Special Fund of Cancer Foundation of China(Grant No.LC2017B15 and LC2020A18).
文摘Dear Editor,Intraoperative radiotherapy(IORT)is an accelerated par-tial breast irradiation(APBI)treatment that is accom-plished intraoperatively.Numerous clinical trials indicate that IORT is safe and effective,non-inferior to standard whole-breast external beam radiotherapy(EBRT)for low-risk patients who receive breast-conserving surgery[1-3].Nevertheless,these studies mainly included non-Asians and thus lack adequate evidence to support the value of IORT in Asian patients with breast cancer.