As a new electrochemical power system,safety(especially thermal safety)of Na-ion batteries(NIBs)is the key towards large-scale industrialization and market application.Thus,research on the thermal stability of NIBs is...As a new electrochemical power system,safety(especially thermal safety)of Na-ion batteries(NIBs)is the key towards large-scale industrialization and market application.Thus,research on the thermal stability of NIBs is helpful to evaluate the safety properties and to provide effective strategies to prevent the occurrence of battery safety failure.Thermal stability of the high-power 26650 cylindrical NIBs using Cu-based layered oxide cathode and hard carbon anode is studied.The high power NIBs can achieve fast charge and discharge at 5–10 C rate and maintain 80%capacity after 4729 cycles at 2 C/2 C rate,where the unit C denotes a measure of the rate at which a battery is charge-discharged relative to its maximum capacity.The results of accelerating rate calorimeter and differential scanning calorimetry(ARC-DSC)test results show that NIBs have a higher initial decomposition temperature(≥110℃)and a lower maximum thermal runaway temperature(≤350℃)than those of Li-ion batteries(LIBs),exhibiting a favorable thermal stability.It should be noted that the heat generation of cathode accounts for a large proportion of the total heat generation while the thermal stability of the anode determines the initial thermal runaway temperature,which is similar to LIBs.Finally,the whole temperature characteristics of the NIBs in the range of−60℃–1000℃are summarized,which provide guidance for the safety design and applications of NIBs.展开更多
The femtosecond laser has emerged as a powerful tool for micro-and nanoscale device fabrication. Through nonlinear ionization processes, nanometer-sized material modifications can be inscribed in transparent materials...The femtosecond laser has emerged as a powerful tool for micro-and nanoscale device fabrication. Through nonlinear ionization processes, nanometer-sized material modifications can be inscribed in transparent materials for device fabrication. This paper describes femtosecond precision inscription of nanograting in silica fiber cores to form both distributed and point fiber sensors for sensing applications in extreme environmental conditions. Through the use of scanning electron microscope imaging and laser processing optimization,high-temperature stable, Type II femtosecond laser modifications were continuously inscribed,point by point, with only an insertion loss at 1 d B m~(-1) or 0.001 d B per point sensor device.High-temperature performance of fiber sensors was tested at 1000℃, which showed a temperature fluctuation of ±5.5℃ over 5 days. The low laser-induced insertion loss in optical fibers enabled the fabrication of a 1.4 m, radiation-resilient distributed fiber sensor. The in-pile testing of the distributed fiber sensor further showed that fiber sensors can execute stable and distributed temperature measurements in extreme radiation environments. Overall, this paper demonstrates that femtosecond-laser-fabricated fiber sensors are suitable measurement devices for applications in extreme environments.展开更多
Structure of porous media and fluid distribution in rocks can significantly affect the transport characteristics during the process of microscale tracer flow.To clarify the effect of micro heterogeneity on aqueous tra...Structure of porous media and fluid distribution in rocks can significantly affect the transport characteristics during the process of microscale tracer flow.To clarify the effect of micro heterogeneity on aqueous tracer transport,this paper demonstrates microscopic experiments at pore level and proposes an improved mathematical model for tracer transport.The visualization results show a faster tracer movement into movable water than it into bound water,and quicker occupancy in flowing pores than in storage pores caused by the difference of tracer velocity.Moreover,the proposed mathematical model includes the effects of bound water and flowing porosity by applying interstitial flow velocity expression.The new model also distinguishes flowing and storage pores,accounting for different tracer transport mechanisms(dispersion,diffusion and adsorption)in different types of pores.The resulting analytical solution better matches with tracer production data than the standard model.The residual sum of squares(RSS)from the new model is 0.0005,which is 100 times smaller than the RSS from the standard model.The sensitivity analysis indicates that the dispersion coefficient and flowing porosity shows a negative correlation with the tracer breakthrough time and the increasing slope,whereas the superficial velocity and bound water saturation show a positive correlation.展开更多
Background Atresia and degeneration,a follicular developmental fate that reduces female fertility and is triggered by granulosa cell(GC)apoptosis,have been induced by dozens of miRNAs.Here,we report a miRNA,miR-423,th...Background Atresia and degeneration,a follicular developmental fate that reduces female fertility and is triggered by granulosa cell(GC)apoptosis,have been induced by dozens of miRNAs.Here,we report a miRNA,miR-423,that inhibits the initiation of follicular atresia(FA),and early apoptosis of GCs.Results We showed that miR-423 was down-regulated during sow FA,and its levels in follicles were negatively correlated with the GC density and the P4/E2 ratio in the follicular fluid in vivo.The in vitro gain-of-function experiments revealed that miR-423 suppresses cell apoptosis,especially early apoptosis in GCs.Mechanically speaking,the miR-423 targets and interacts with the 3’-UTR of the porcine SMAD7 gene,which encodes an apoptosis-inducing factor in GCs,and represses its expression and pro-apoptotic function.Interestingly,FA and the GC apoptosis-related lncRNA NORHA was demonstrated as a ceRNA of miR-423.Additionally,we showed that a single base deletion/insertion in the miR-423 promoter is significantly associated with the number of stillbirths(NSB)trait of sows.Conclusion These results demonstrate that miR-423 is a small molecule for inhibiting FA initiation and GC early apoptosis,suggesting that treating with miR-423 may be a novel approach for inhibiting FA initiation and improving female fertility.展开更多
Plant morphogenesis relies on precise gene expression programs at the proper time and position which is orchestrated by transcription factors(TFs)in intricate regulatory networks in a cell-type specific manner.Here we...Plant morphogenesis relies on precise gene expression programs at the proper time and position which is orchestrated by transcription factors(TFs)in intricate regulatory networks in a cell-type specific manner.Here we introduced a comprehensive single-cell transcriptomic atlas of Arabidopsis seedlings.This atlas is the result of meticulous integration of 63 previously published scRNA-seq datasets,addressing batch effects and conserving biological variance.This integration spans a broad spectrum of tissues,including both below-and above-ground parts.Utilizing a rigorous approach for cell type annotation,we identified 47 distinct cell types or states,largely expanding our current view of plant cell compositions.We systematically constructed cell-type specific gene regulatory networks and uncovered key regulators that act in a coordinated manner to control cell-type specific gene expression.Taken together,our study not only offers extensive plant cell atlas exploration that serves as a valuable resource,but also provides molecular insights into gene-regulatory programs that varies from different cell types.展开更多
Safety requirements stimulate Na-based batteries to evolve from high-temperature Na–S batteries to room-temperature Na-ion batteries(NIBs).Even so,NIBs may still cause thermal runaway due to the external unexpected a...Safety requirements stimulate Na-based batteries to evolve from high-temperature Na–S batteries to room-temperature Na-ion batteries(NIBs).Even so,NIBs may still cause thermal runaway due to the external unexpected accidents and internal high activity of electrodes or electrolytes,which has not been comprehensively summarized yet.In this review,we summarize the significant advances about the failure mechanisms and related strategies to build safer NIBs from the selection of electrodes,electrolytes and the construction of electrode/electrolyte interfaces.Considering the safety risk,the thermal behaviors are emphasized which will deepen the understanding of thermal stability of different NIBs and accelerate the exploitation of safe NIBs.展开更多
Betula L.(birch)is a pioneer hardwood tree species with ecological,economic,and evolutionary importance in the Northern Hemisphere.We sequenced the Betula platyphylla genome and assembled the sequences into 14 chromos...Betula L.(birch)is a pioneer hardwood tree species with ecological,economic,and evolutionary importance in the Northern Hemisphere.We sequenced the Betula platyphylla genome and assembled the sequences into 14 chromosomes.The Betula genome lacks evidence of recent whole-genome duplication and has the same paleoploidy level as Vitis vinifera and Prunus mume.Phylogenetic analysis of lignin pathway genes coupled with tissue-specific expression patterns provided clues for understanding the formation of higher ratios of syringyl to guaiacyl lignin observed in Betula species.Our transcriptome analysis of leaf tissues under a time-series cold stress experiment revealed the presence of the MEKK1–MKK2–MPK4 cascade and six additional mitogen-activated protein kinases that can be linked to a gene regulatory network involving many transcription factors and cold tolerance genes.Our genomic and transcriptome analyses provide insight into the structures,features,and evolution of the B.platyphylla genome.The chromosome-level genome and gene resources of B.platyphylla obtained in this study will facilitate the identification of important and essential genes governing important traits of trees and genetic improvement of B.platyphylla.展开更多
This paper first reviewed the pharmacological effects and mechanisms of Sclareol in recent years.It discussed anti-inflammatory effects,antibacterial,and anti-photoaging effects of Sclareol.It is expected to lay a the...This paper first reviewed the pharmacological effects and mechanisms of Sclareol in recent years.It discussed anti-inflammatory effects,antibacterial,and anti-photoaging effects of Sclareol.It is expected to lay a theoretical basis for its application in the pharmaceutical field.展开更多
Metabolically healthy obesity refers to obese individuals who do not develop metabolic disorders.These people store fat in subcutaneous adipose tissue(SAT)rather than in visceral adipose tissue(VAT).However,the molecu...Metabolically healthy obesity refers to obese individuals who do not develop metabolic disorders.These people store fat in subcutaneous adipose tissue(SAT)rather than in visceral adipose tissue(VAT).However,the molecules participating in this specific scenario remain elusive.Rab18,a lipid droplet(LD)-associated protein,mediates the contact between the endoplasmic reticulum(ER)and LDs to facilitate LD growth and maturation.In the present study,we show that the protein level of Rab18 is specifically upregulated in the SAT of obese people and mice.Rab18 adipocyte-specific knockout(Rab18 AKO)mice had a decreased volume ratio of SAT to VAT compared with wildtype mice.When subjected to high-fat diet(HFD),Rab18 AKO mice had increased ER stress and inflammation,reduced adiponectin,and decreased triacylglycerol(TAG)accumulation in SAT.In contrast,TAG accumulation in VAT,brown adipose tissue(BAT)or liver of Rab18AKO mice had a moderate increase without ER stress stimulation.Rab18 AKO mice developed insulin resistance and systematic inflammation.Rab18 AKO mice maintained body temperature in response to acute and chronic cold induction with a thermogenic SAT,similar to the counterpart mice.Furthermore,Rab18-deficient 3T3-L1 adipocytes were more prone to palmitate-induced ER stress,indicating the involvement of Rab18 in alleviating lipid toxicity.Rab18 AKO mice provide a good animal model to investigate metabolic disorders such as impaired SAT.In conclusion,our studies reveal that Rab18 is a key and specific regulator that maintains the proper functions of SAT by alleviating lipid-induced ER stress.展开更多
The covalently closed circular DNA(cccDNA)of HBV plays a crucial role in viral persistence and is also a risk factor for developing HBV-induced diseases,including liver fibrosis.Stimulator of interferon genes(STING),a...The covalently closed circular DNA(cccDNA)of HBV plays a crucial role in viral persistence and is also a risk factor for developing HBV-induced diseases,including liver fibrosis.Stimulator of interferon genes(STING),a master regulator of DNA-mediated innate immune activation,is a potential therapeutic target for viral infection and virus-related diseases.In this study,agonist-induced STING signaling activation in macrophages was revealed to inhibit cccDNA-mediated transcription and HBV replication via epigenetic modification in hepatocytes.Notably,STING activation could efficiently attenuate the severity of liver injury and fibrosis in a chronic recombinant cccDNA(rcccDNA)mouse model,which is a proven suitable research platform for HBV-induced fibrosis.Mechanistically,STING-activated autophagic flux could suppress macrophage inflammasome activation,leading to the amelioration of liver injury and HBV-induced fibrosis.Overall,the activation of STING signaling could inhibit HBV replication through epigenetic suppression of cccDNA and alleviate HBV-induced liver fibrosis through the suppression of macrophage inflammasome activation by activating autophagic flux in a chronic HBV mouse model.This study suggests that targeting the STING signaling pathway may be an important therapeutic strategy to protect against persistent HBV replication and HBV-induced fibrosis.展开更多
Stimulated Raman-scattering-based lasers provide an effective way to achieve wavelength conversion.However,thermally induced beam degradation is a notorious obstacle to power scaling and it also limits the applicable ...Stimulated Raman-scattering-based lasers provide an effective way to achieve wavelength conversion.However,thermally induced beam degradation is a notorious obstacle to power scaling and it also limits the applicable range where high output beam quality is needed.Considerable research efforts have been devoted to developing Raman materials,with diamond being a promising candidate to acquire wavelength-versatile,high-power,and high-quality output beam owing to its excellent thermal properties,high Raman gain coefficient,and wide transmission range.The diamond Raman resonator is usually designed as an external-cavity pumped structure,which can easily eliminate the negative thermal effects of intracavity laser crystals.Diamond Raman converters also provide an approach to improve the beam quality owing to the Raman cleanup effect.This review outlines the research status of diamond Raman lasers,including beam quality optimization,Raman conversion,thermal effects,and prospects for future development directions.展开更多
A flexible and stable power supply is essential to the rapid development of wearable electronic devices.In this work,a transparent,flexible,temperature-stable and ionogel electrode-based self-healing triboelectric nan...A flexible and stable power supply is essential to the rapid development of wearable electronic devices.In this work,a transparent,flexible,temperature-stable and ionogel electrode-based self-healing triboelectric nanogenerator(IS-TENG)was developed.The ionogel with excellent stretchability(1,012%),high ionic conductivity(0.3 S·m^(−1))and high-temperature stability(temperature range of−77 to 250℃)was used as the electrode of the IS-TENG.The IS-TENG exhibited excellent transparency(92.1%)and stability.The output performance did not decrease when placed in a 60℃oven for 48 h.In addition,the IS-TENG behaved like a stable output in the range of−20 to 60℃.More importantly,the IS-TENG could also achieve self-healing of electrical performance at temperatures between−20 and 60℃and its output can be restored to its original state after healing.When the single-electrode IS-TENG with an area of 3 cm×3 cm was conducted under the working frequency of 1.5 Hz,the output values for open-circuit voltage,short-circuit current,short-circuit transferred charge,and maximum peak power density were 189 V,6.2μA,57 nC,and 2.17 W·m^(−2),respectively.The IS-TENG enables to harvest biomechanical energy,and drive electronic devices.Furthermore,the application of IS-TENGs as self-driven sensors for detecting human behavior was also demonstrated,showing good application prospects in the field of wearable power technology and self-driven sensing.展开更多
The plume divergence angle is an important reference index for evaluating the thrust efficiency and propellant utilization of space propulsion systems.However,the characteristics of the dynamic variation of plume dive...The plume divergence angle is an important reference index for evaluating the thrust efficiency and propellant utilization of space propulsion systems.However,the characteristics of the dynamic variation of plume divergence angle over time cannot be measured using current methods.This paper utilizes high-speed photography and image processing methods to develop a strategy that can give a quick,non-destructive and real-time detection of the divergence angle.Effectiveness of the strategy is verified,and the characteristics of plume divergence angles of different lasercontrolled solid propellants were further analyzed and fitted.The experimental results indicate that graphene could effectively reduce the divergence angle,while oxide-doped samples had larger divergence angles than alloy-doped and carbon-doped samples.展开更多
Background:Berberine effectively alleviates non-alcoholic fatty liver disease(NAFLD).Nevertheless,the mechanism is incompletely comprehended.It has been reported that SIRT1 mediates lipid metabolism in liver and berbe...Background:Berberine effectively alleviates non-alcoholic fatty liver disease(NAFLD).Nevertheless,the mechanism is incompletely comprehended.It has been reported that SIRT1 mediates lipid metabolism in liver and berberine promotes the expression of SIRT1 in hepatocytes.We hypothesized that SIRT1 mediated the effect of berberine on NAFLD.Methods:The effects of berberine on NAFLD were evaluated in C57BL/6J mice fed a high-fat diet(HFD)and in mouse primary hepatocytes and cell lines exposed to palmitate.The change of fatty acid oxidation(FAO)and the activity of CPT1A were observed in HepG2 cells.Quantitative real-time polymerase chain reaction and Western blot were employed to observe the expression of SIRT1 and lipid metabolism-related molecules.The interaction between SIRT1 and CPT1A was investigated by using co-immunoprecipitation assay in HEK293T cells.Results:Berberine treatment attenuated hepatic steatosis,reduced triglyceride(190.1611.2 lmol/g liver vs 113.667.6 lmol/g liver,P<0.001)and cholesterol(11.362.5 lmol/g liver vs 6.360.4 lmol/g liver,P<0.001)concentration in the liver,and improved lipid and glucose metabolism disorders compared with the HFD group.The expression of SIRT1 was reduced in the liver of NAFLD patients and mouse models.Berberine increased the expression of SIRT1 and promoted the protein level of CPT1A and its activity in HepG2 cells.SIRT1 overexpression mimicked the effect of berberine on reducing triglyceride levels in HepG2 cells,whereas SIRT1 knock-down attenuated the effect of berberine.Mechanistically,berberine increased the expression of SIRT1.SIRT1 deacetylated CPT1A at the Lys675 site,which suppressed its ubiquitin-dependent degradation,thereby promoting FAO and alleviating non-alcoholic liver steatosis.Conclusions:Berberine promoted SIRT1 deacetylation of CPT1A at the Lys675 site,which reduced the ubiquitin-dependent degradation of CPT1A and ameliorated non-alcoholic liver steatosis.展开更多
1 Introduction A related study called community search,whose target is to find dense subgraphs containing the given node,has drawn a growing amount of attention recently[1].To explore the higher-order structure of com...1 Introduction A related study called community search,whose target is to find dense subgraphs containing the given node,has drawn a growing amount of attention recently[1].To explore the higher-order structure of complex networks,truss-based community search methods[2]have been proposed.Nevertheless,the truss-based hypergraph constructed from the original graph is frequently fragmented and consists of numerous subgraphs and isolated nodes[3],which boils down to the fact that these methods often pay only attention to the truss connections but ignore the lower-order connectivity of the original graph.展开更多
Bioretention is a best management practice which uses vegetation to improve the pollutant removal rates in the rain water management.To select the best plant species to remove multiple pollutants in a bioretention sys...Bioretention is a best management practice which uses vegetation to improve the pollutant removal rates in the rain water management.To select the best plant species to remove multiple pollutants in a bioretention system,we tested thirty species of plants in a laboratory in Beijing,China.We found that the ability of the plants to reduce concentrations of heavy metals including cadmium(Cd),lead(Pb),zinc(Zn),and ammonium(NH4?–N)is more than90%.The removal efficiencies for NH4?–N,nitrate(NO3-–N),total phosphorus,and copper(Cu)varied markedly among plant species.The single overall best plant was not easy to be determined.To select the best plant species,we used a dynamic neural network to establish an assessment index system,assessment criteria,and an assessment model that is used here for the first time for multiple pollutants’removal.Applying the theory and model,we discovered that Plantago asiatica L.and Digitaria sanguinalis(L.)Scop.are the overall best plants for removing the seven typicalpollutants.This paper will provide a simple and useful guide for the comprehensive assessment of multiple pollutant removal by plants in complex ecological systems.展开更多
The rapid development of wearable electronic products brings challenges to corresponding power supplies.In this work,a thermally stable and stretchable ionogel-based triboelectric nanogenerator(SI-TENG)for biomechanic...The rapid development of wearable electronic products brings challenges to corresponding power supplies.In this work,a thermally stable and stretchable ionogel-based triboelectric nanogenerator(SI-TENG)for biomechanical energy collection is proposed.The ionic conductivity of the ionogel increased to 0.53 S·m^(−1) through optimal regulation of the amount of aminoterminated hyperbranched polyamide(NH2-HBP),which also has high strain of 812%,excellent stretch recovery,and wide operating temperature range of−80 to 250°C.The SI-TENG with this ionogel as electrode and silicone rubber both as the triboelectric layer and encapsulation layer exhibits high temperature stability,stretchability,and washability.By adding appropriate amount of nano SiO2 to triboelectric layer,the output performance is further improved by 93%.Operating in singleelectrode mode at 1.5 Hz,the outputs of a SI-TENG with an area of 3 cm×3 cm are 247 V,11.7μA,78 nC,and 3.2 W·m^(−2),respectively.It was used as a self-charging power supply to charge a 22μF capacitor to 1.6 V in 167 s with the palm patting and then to power the electronic calculator.Furthermore,the SI-TENG can also be used as a self-powered motion sensor to detect the amplitude and frequency of finger bending,human swallowing,nodding,and shaking of the head motion changes through the analysis of the output voltage.展开更多
Poly(glycerol-dodecanoate)(PGD)has aroused increasing attention in biomedical engineering for its degradability,shape memory and rubber-like mechanical properties,giving it potential to fabricate intelligent implants ...Poly(glycerol-dodecanoate)(PGD)has aroused increasing attention in biomedical engineering for its degradability,shape memory and rubber-like mechanical properties,giving it potential to fabricate intelligent implants for soft tissues.Adjustable degradation is important for biodegradable implants and is affected by various factors.The mechanical load has been shown to play an important role in regulating polymer degradation in vivo.An in-depth investigation of PGD degradation under mechanical load is essential for adjusting its degradation behavior after implantation,further guiding to regulate degradation behavior of soft tissue implants made by PGD.In vitro degradation of PGD under different compressive and tensile load has proceeded in this study and describes the relationships by empirical equations.Based on the equations,a continuum damage model is designed to simulate surface erosion degradation of PGD under stress through finite element analysis,which provides a protocol for PGD implants with different geometric structures at varied mechanical conditions and provides solutions for predicting in vivo degradation processes,stress distribution during degradation and optimization of the loaded drug release.展开更多
基金Supported by the National Key Technology R&D Program of China(Grant No.2016YFB0901500)the National Natural Science Foundation of China(Grant No.51725206)+2 种基金NSFCUKRI_EPSRC(Grant No.51861165201)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA21070500)Beijing Natural Science Fund-Haidian Original Innovation Joint Fund(Grant No.L182056).
文摘As a new electrochemical power system,safety(especially thermal safety)of Na-ion batteries(NIBs)is the key towards large-scale industrialization and market application.Thus,research on the thermal stability of NIBs is helpful to evaluate the safety properties and to provide effective strategies to prevent the occurrence of battery safety failure.Thermal stability of the high-power 26650 cylindrical NIBs using Cu-based layered oxide cathode and hard carbon anode is studied.The high power NIBs can achieve fast charge and discharge at 5–10 C rate and maintain 80%capacity after 4729 cycles at 2 C/2 C rate,where the unit C denotes a measure of the rate at which a battery is charge-discharged relative to its maximum capacity.The results of accelerating rate calorimeter and differential scanning calorimetry(ARC-DSC)test results show that NIBs have a higher initial decomposition temperature(≥110℃)and a lower maximum thermal runaway temperature(≤350℃)than those of Li-ion batteries(LIBs),exhibiting a favorable thermal stability.It should be noted that the heat generation of cathode accounts for a large proportion of the total heat generation while the thermal stability of the anode determines the initial thermal runaway temperature,which is similar to LIBs.Finally,the whole temperature characteristics of the NIBs in the range of−60℃–1000℃are summarized,which provide guidance for the safety design and applications of NIBs.
基金supported in part through Department of Energy Grants DE-NE0008686 and DE-FE00028992the NEET ASI program under DOE Idaho Operations Office Contract DE-AC07-05ID14517。
文摘The femtosecond laser has emerged as a powerful tool for micro-and nanoscale device fabrication. Through nonlinear ionization processes, nanometer-sized material modifications can be inscribed in transparent materials for device fabrication. This paper describes femtosecond precision inscription of nanograting in silica fiber cores to form both distributed and point fiber sensors for sensing applications in extreme environmental conditions. Through the use of scanning electron microscope imaging and laser processing optimization,high-temperature stable, Type II femtosecond laser modifications were continuously inscribed,point by point, with only an insertion loss at 1 d B m~(-1) or 0.001 d B per point sensor device.High-temperature performance of fiber sensors was tested at 1000℃, which showed a temperature fluctuation of ±5.5℃ over 5 days. The low laser-induced insertion loss in optical fibers enabled the fabrication of a 1.4 m, radiation-resilient distributed fiber sensor. The in-pile testing of the distributed fiber sensor further showed that fiber sensors can execute stable and distributed temperature measurements in extreme radiation environments. Overall, this paper demonstrates that femtosecond-laser-fabricated fiber sensors are suitable measurement devices for applications in extreme environments.
基金funded by National Science and Technology Major Projects(2017ZX05009004,2016ZX05058003)Beijing Natural Science Foundation(2173061)and State Energy Center for Shale Oil Research and Development(G5800-16-ZS-KFNY005).
文摘Structure of porous media and fluid distribution in rocks can significantly affect the transport characteristics during the process of microscale tracer flow.To clarify the effect of micro heterogeneity on aqueous tracer transport,this paper demonstrates microscopic experiments at pore level and proposes an improved mathematical model for tracer transport.The visualization results show a faster tracer movement into movable water than it into bound water,and quicker occupancy in flowing pores than in storage pores caused by the difference of tracer velocity.Moreover,the proposed mathematical model includes the effects of bound water and flowing porosity by applying interstitial flow velocity expression.The new model also distinguishes flowing and storage pores,accounting for different tracer transport mechanisms(dispersion,diffusion and adsorption)in different types of pores.The resulting analytical solution better matches with tracer production data than the standard model.The residual sum of squares(RSS)from the new model is 0.0005,which is 100 times smaller than the RSS from the standard model.The sensitivity analysis indicates that the dispersion coefficient and flowing porosity shows a negative correlation with the tracer breakthrough time and the increasing slope,whereas the superficial velocity and bound water saturation show a positive correlation.
基金supported by the National Key R&D Program of China(2022YFD1600903)the National Natural Science Foundation of China(32072693)the College Students’Innovative Entrepreneurial Training Plan Program(202110307028).
文摘Background Atresia and degeneration,a follicular developmental fate that reduces female fertility and is triggered by granulosa cell(GC)apoptosis,have been induced by dozens of miRNAs.Here,we report a miRNA,miR-423,that inhibits the initiation of follicular atresia(FA),and early apoptosis of GCs.Results We showed that miR-423 was down-regulated during sow FA,and its levels in follicles were negatively correlated with the GC density and the P4/E2 ratio in the follicular fluid in vivo.The in vitro gain-of-function experiments revealed that miR-423 suppresses cell apoptosis,especially early apoptosis in GCs.Mechanically speaking,the miR-423 targets and interacts with the 3’-UTR of the porcine SMAD7 gene,which encodes an apoptosis-inducing factor in GCs,and represses its expression and pro-apoptotic function.Interestingly,FA and the GC apoptosis-related lncRNA NORHA was demonstrated as a ceRNA of miR-423.Additionally,we showed that a single base deletion/insertion in the miR-423 promoter is significantly associated with the number of stillbirths(NSB)trait of sows.Conclusion These results demonstrate that miR-423 is a small molecule for inhibiting FA initiation and GC early apoptosis,suggesting that treating with miR-423 may be a novel approach for inhibiting FA initiation and improving female fertility.
基金supported by the National Natural Science Foundation of China (No.32070656)the Nanjing University Deng Feng Scholars Program+1 种基金the Priority Academic Program Development (PAPD) of Jiangsu Higher Education Institutions,China Postdoctoral Science Foundation funded project (No.2022M711563)Jiangsu Funding Program for Excellent Postdoctoral Talent (No.2022ZB50)
文摘Plant morphogenesis relies on precise gene expression programs at the proper time and position which is orchestrated by transcription factors(TFs)in intricate regulatory networks in a cell-type specific manner.Here we introduced a comprehensive single-cell transcriptomic atlas of Arabidopsis seedlings.This atlas is the result of meticulous integration of 63 previously published scRNA-seq datasets,addressing batch effects and conserving biological variance.This integration spans a broad spectrum of tissues,including both below-and above-ground parts.Utilizing a rigorous approach for cell type annotation,we identified 47 distinct cell types or states,largely expanding our current view of plant cell compositions.We systematically constructed cell-type specific gene regulatory networks and uncovered key regulators that act in a coordinated manner to control cell-type specific gene expression.Taken together,our study not only offers extensive plant cell atlas exploration that serves as a valuable resource,but also provides molecular insights into gene-regulatory programs that varies from different cell types.
基金Project supported by the National Key Technologies R&D Program,China(Grant No.2016YFB0901500)the National Natural Science Foundation(NSFC)of China(Grant Nos.51725206 and 51421002)+3 种基金NSFCUKRI EPSRC(Grant No.51861165201)the Strategic Priority Research Program of the Chinese Academy of Sciences(Grant No.XDA21070500)Beijing Municipal Science and Technology Commission,China(Grant No.Z181100004718008)Beijing Natural Science Fund–Haidian Original Innovation Joint Fund,China(Grant No.L182056)。
文摘Safety requirements stimulate Na-based batteries to evolve from high-temperature Na–S batteries to room-temperature Na-ion batteries(NIBs).Even so,NIBs may still cause thermal runaway due to the external unexpected accidents and internal high activity of electrodes or electrolytes,which has not been comprehensively summarized yet.In this review,we summarize the significant advances about the failure mechanisms and related strategies to build safer NIBs from the selection of electrodes,electrolytes and the construction of electrode/electrolyte interfaces.Considering the safety risk,the thermal behaviors are emphasized which will deepen the understanding of thermal stability of different NIBs and accelerate the exploitation of safe NIBs.
基金Forestry Industry Research Special Funds for Public Welfare Projects(No.201004046)the National High Technology Research and Development Program(“863”Program)of China(2011AA100202)+1 种基金Heilongjiang Touyan Innovation Team Program(Tree Genetics and Breeding Innovation Team)the 111 Project(B16010).
文摘Betula L.(birch)is a pioneer hardwood tree species with ecological,economic,and evolutionary importance in the Northern Hemisphere.We sequenced the Betula platyphylla genome and assembled the sequences into 14 chromosomes.The Betula genome lacks evidence of recent whole-genome duplication and has the same paleoploidy level as Vitis vinifera and Prunus mume.Phylogenetic analysis of lignin pathway genes coupled with tissue-specific expression patterns provided clues for understanding the formation of higher ratios of syringyl to guaiacyl lignin observed in Betula species.Our transcriptome analysis of leaf tissues under a time-series cold stress experiment revealed the presence of the MEKK1–MKK2–MPK4 cascade and six additional mitogen-activated protein kinases that can be linked to a gene regulatory network involving many transcription factors and cold tolerance genes.Our genomic and transcriptome analyses provide insight into the structures,features,and evolution of the B.platyphylla genome.The chromosome-level genome and gene resources of B.platyphylla obtained in this study will facilitate the identification of important and essential genes governing important traits of trees and genetic improvement of B.platyphylla.
基金Supported by the Central Government Supporting Local College Reform and Development Fund Talent Training Projects(2020GSP16)the Heilongjiang Touyan Innovation Team Program(2019HTY078)+3 种基金the Project for Heilongjiang Bayi Agricultural University(XDB202012)Heilongjiang Bayi Agricultural University’s Scientific Research Start-up Plan for Learning and Introducing Talents(XYB2015-09)the Postdoctoral Scientific Research Start-up Fund of Heilongjiang(LBH-Q21158)the College Students’Innovation and Entrepreneurship Training Program in Heilongjiang Province:Protective Effect of Chrysophanol-PLGA Nanoparticles on Intestinal Mucosal Immune Barrier by Eegulating th17/treg Balance。
文摘This paper first reviewed the pharmacological effects and mechanisms of Sclareol in recent years.It discussed anti-inflammatory effects,antibacterial,and anti-photoaging effects of Sclareol.It is expected to lay a theoretical basis for its application in the pharmaceutical field.
基金supported by the National Key Research and Development Program of China(2018YFA0506901,2019YFA0801701,2022YFA0806502)the National Natural Science Foundation of China(92254308,92157107)the Lingang Laboratory(LG-QS-202204-06)。
文摘Metabolically healthy obesity refers to obese individuals who do not develop metabolic disorders.These people store fat in subcutaneous adipose tissue(SAT)rather than in visceral adipose tissue(VAT).However,the molecules participating in this specific scenario remain elusive.Rab18,a lipid droplet(LD)-associated protein,mediates the contact between the endoplasmic reticulum(ER)and LDs to facilitate LD growth and maturation.In the present study,we show that the protein level of Rab18 is specifically upregulated in the SAT of obese people and mice.Rab18 adipocyte-specific knockout(Rab18 AKO)mice had a decreased volume ratio of SAT to VAT compared with wildtype mice.When subjected to high-fat diet(HFD),Rab18 AKO mice had increased ER stress and inflammation,reduced adiponectin,and decreased triacylglycerol(TAG)accumulation in SAT.In contrast,TAG accumulation in VAT,brown adipose tissue(BAT)or liver of Rab18AKO mice had a moderate increase without ER stress stimulation.Rab18 AKO mice developed insulin resistance and systematic inflammation.Rab18 AKO mice maintained body temperature in response to acute and chronic cold induction with a thermogenic SAT,similar to the counterpart mice.Furthermore,Rab18-deficient 3T3-L1 adipocytes were more prone to palmitate-induced ER stress,indicating the involvement of Rab18 in alleviating lipid toxicity.Rab18 AKO mice provide a good animal model to investigate metabolic disorders such as impaired SAT.In conclusion,our studies reveal that Rab18 is a key and specific regulator that maintains the proper functions of SAT by alleviating lipid-induced ER stress.
基金This work was supported by grants from the National Natural Science Foundation of China(C31872731,C32070910,C31470839)Zhengyi Scholar Foundation of School of Basic Medical Sciences,Hehai University(S25-01).
文摘The covalently closed circular DNA(cccDNA)of HBV plays a crucial role in viral persistence and is also a risk factor for developing HBV-induced diseases,including liver fibrosis.Stimulator of interferon genes(STING),a master regulator of DNA-mediated innate immune activation,is a potential therapeutic target for viral infection and virus-related diseases.In this study,agonist-induced STING signaling activation in macrophages was revealed to inhibit cccDNA-mediated transcription and HBV replication via epigenetic modification in hepatocytes.Notably,STING activation could efficiently attenuate the severity of liver injury and fibrosis in a chronic recombinant cccDNA(rcccDNA)mouse model,which is a proven suitable research platform for HBV-induced fibrosis.Mechanistically,STING-activated autophagic flux could suppress macrophage inflammasome activation,leading to the amelioration of liver injury and HBV-induced fibrosis.Overall,the activation of STING signaling could inhibit HBV replication through epigenetic suppression of cccDNA and alleviate HBV-induced liver fibrosis through the suppression of macrophage inflammasome activation by activating autophagic flux in a chronic HBV mouse model.This study suggests that targeting the STING signaling pathway may be an important therapeutic strategy to protect against persistent HBV replication and HBV-induced fibrosis.
基金supported by the National Natural Science Foundation of China(Nos.62005075,61927815,and 61905061)Hebei Science and Technology Research Project(No.QN2020182)Hebei Natural Science Foundation(Nos.F2020202029 and F2020202026)。
文摘Stimulated Raman-scattering-based lasers provide an effective way to achieve wavelength conversion.However,thermally induced beam degradation is a notorious obstacle to power scaling and it also limits the applicable range where high output beam quality is needed.Considerable research efforts have been devoted to developing Raman materials,with diamond being a promising candidate to acquire wavelength-versatile,high-power,and high-quality output beam owing to its excellent thermal properties,high Raman gain coefficient,and wide transmission range.The diamond Raman resonator is usually designed as an external-cavity pumped structure,which can easily eliminate the negative thermal effects of intracavity laser crystals.Diamond Raman converters also provide an approach to improve the beam quality owing to the Raman cleanup effect.This review outlines the research status of diamond Raman lasers,including beam quality optimization,Raman conversion,thermal effects,and prospects for future development directions.
基金the financial support of the National Science Foundation of China(Nos.51605109 and 61804103)the Guangxi Natural Science Foundation(Nos.2018GXNSFBA281052 and 2018GXNSFAA281296)China Postdoctoral Science Foundation(Nos.2017M610346 and 2021T140494)。
文摘A flexible and stable power supply is essential to the rapid development of wearable electronic devices.In this work,a transparent,flexible,temperature-stable and ionogel electrode-based self-healing triboelectric nanogenerator(IS-TENG)was developed.The ionogel with excellent stretchability(1,012%),high ionic conductivity(0.3 S·m^(−1))and high-temperature stability(temperature range of−77 to 250℃)was used as the electrode of the IS-TENG.The IS-TENG exhibited excellent transparency(92.1%)and stability.The output performance did not decrease when placed in a 60℃oven for 48 h.In addition,the IS-TENG behaved like a stable output in the range of−20 to 60℃.More importantly,the IS-TENG could also achieve self-healing of electrical performance at temperatures between−20 and 60℃and its output can be restored to its original state after healing.When the single-electrode IS-TENG with an area of 3 cm×3 cm was conducted under the working frequency of 1.5 Hz,the output values for open-circuit voltage,short-circuit current,short-circuit transferred charge,and maximum peak power density were 189 V,6.2μA,57 nC,and 2.17 W·m^(−2),respectively.The IS-TENG enables to harvest biomechanical energy,and drive electronic devices.Furthermore,the application of IS-TENGs as self-driven sensors for detecting human behavior was also demonstrated,showing good application prospects in the field of wearable power technology and self-driven sensing.
基金This study was co-supported by the Innovative Research Groups of the National Natural Science Foundation of China(No.T2221002).
文摘The plume divergence angle is an important reference index for evaluating the thrust efficiency and propellant utilization of space propulsion systems.However,the characteristics of the dynamic variation of plume divergence angle over time cannot be measured using current methods.This paper utilizes high-speed photography and image processing methods to develop a strategy that can give a quick,non-destructive and real-time detection of the divergence angle.Effectiveness of the strategy is verified,and the characteristics of plume divergence angles of different lasercontrolled solid propellants were further analyzed and fitted.The experimental results indicate that graphene could effectively reduce the divergence angle,while oxide-doped samples had larger divergence angles than alloy-doped and carbon-doped samples.
基金supported by the Science and Technology Foundation of Guangzhou,China[No.201903010099].
文摘Background:Berberine effectively alleviates non-alcoholic fatty liver disease(NAFLD).Nevertheless,the mechanism is incompletely comprehended.It has been reported that SIRT1 mediates lipid metabolism in liver and berberine promotes the expression of SIRT1 in hepatocytes.We hypothesized that SIRT1 mediated the effect of berberine on NAFLD.Methods:The effects of berberine on NAFLD were evaluated in C57BL/6J mice fed a high-fat diet(HFD)and in mouse primary hepatocytes and cell lines exposed to palmitate.The change of fatty acid oxidation(FAO)and the activity of CPT1A were observed in HepG2 cells.Quantitative real-time polymerase chain reaction and Western blot were employed to observe the expression of SIRT1 and lipid metabolism-related molecules.The interaction between SIRT1 and CPT1A was investigated by using co-immunoprecipitation assay in HEK293T cells.Results:Berberine treatment attenuated hepatic steatosis,reduced triglyceride(190.1611.2 lmol/g liver vs 113.667.6 lmol/g liver,P<0.001)and cholesterol(11.362.5 lmol/g liver vs 6.360.4 lmol/g liver,P<0.001)concentration in the liver,and improved lipid and glucose metabolism disorders compared with the HFD group.The expression of SIRT1 was reduced in the liver of NAFLD patients and mouse models.Berberine increased the expression of SIRT1 and promoted the protein level of CPT1A and its activity in HepG2 cells.SIRT1 overexpression mimicked the effect of berberine on reducing triglyceride levels in HepG2 cells,whereas SIRT1 knock-down attenuated the effect of berberine.Mechanistically,berberine increased the expression of SIRT1.SIRT1 deacetylated CPT1A at the Lys675 site,which suppressed its ubiquitin-dependent degradation,thereby promoting FAO and alleviating non-alcoholic liver steatosis.Conclusions:Berberine promoted SIRT1 deacetylation of CPT1A at the Lys675 site,which reduced the ubiquitin-dependent degradation of CPT1A and ameliorated non-alcoholic liver steatosis.
基金supported by the Research Foundation of Education Bureau of Hunan Province of China(Grant Nos.20B625,22B0275)the Changsha Natural Science Foundation(Grant No.kq2202294).
文摘1 Introduction A related study called community search,whose target is to find dense subgraphs containing the given node,has drawn a growing amount of attention recently[1].To explore the higher-order structure of complex networks,truss-based community search methods[2]have been proposed.Nevertheless,the truss-based hypergraph constructed from the original graph is frequently fragmented and consists of numerous subgraphs and isolated nodes[3],which boils down to the fact that these methods often pay only attention to the truss connections but ignore the lower-order connectivity of the original graph.
基金partly supported by the Funds for Creative Research Groups of China(51121003)the National Basic Research Program of China(2010CB951104)+1 种基金the Specialized Research Fund for the Doctoral Program of Higher Education(20100003110024)the National Natural Science Foundation of China(51079004)
文摘Bioretention is a best management practice which uses vegetation to improve the pollutant removal rates in the rain water management.To select the best plant species to remove multiple pollutants in a bioretention system,we tested thirty species of plants in a laboratory in Beijing,China.We found that the ability of the plants to reduce concentrations of heavy metals including cadmium(Cd),lead(Pb),zinc(Zn),and ammonium(NH4?–N)is more than90%.The removal efficiencies for NH4?–N,nitrate(NO3-–N),total phosphorus,and copper(Cu)varied markedly among plant species.The single overall best plant was not easy to be determined.To select the best plant species,we used a dynamic neural network to establish an assessment index system,assessment criteria,and an assessment model that is used here for the first time for multiple pollutants’removal.Applying the theory and model,we discovered that Plantago asiatica L.and Digitaria sanguinalis(L.)Scop.are the overall best plants for removing the seven typicalpollutants.This paper will provide a simple and useful guide for the comprehensive assessment of multiple pollutant removal by plants in complex ecological systems.
基金supported by the National Key Research and Development Program from Ministry of Science and Technology of China(No.2021YFB3200300)the National Natural Science Foundation of China(No.62174115)+1 种基金the Suzhou Science and Technology Development Planning Project:Key Industrial Technology Innovation(No.SYG202009)This work was also supported by the Collaborative Innovation Center of Suzhou Nano Science&Technology,the 111 Project and Joint International Research Laboratory of Carbon-Based Functional Materials and Devices.
文摘The rapid development of wearable electronic products brings challenges to corresponding power supplies.In this work,a thermally stable and stretchable ionogel-based triboelectric nanogenerator(SI-TENG)for biomechanical energy collection is proposed.The ionic conductivity of the ionogel increased to 0.53 S·m^(−1) through optimal regulation of the amount of aminoterminated hyperbranched polyamide(NH2-HBP),which also has high strain of 812%,excellent stretch recovery,and wide operating temperature range of−80 to 250°C.The SI-TENG with this ionogel as electrode and silicone rubber both as the triboelectric layer and encapsulation layer exhibits high temperature stability,stretchability,and washability.By adding appropriate amount of nano SiO2 to triboelectric layer,the output performance is further improved by 93%.Operating in singleelectrode mode at 1.5 Hz,the outputs of a SI-TENG with an area of 3 cm×3 cm are 247 V,11.7μA,78 nC,and 3.2 W·m^(−2),respectively.It was used as a self-charging power supply to charge a 22μF capacitor to 1.6 V in 167 s with the palm patting and then to power the electronic calculator.Furthermore,the SI-TENG can also be used as a self-powered motion sensor to detect the amplitude and frequency of finger bending,human swallowing,nodding,and shaking of the head motion changes through the analysis of the output voltage.
基金supported by the National Natural Science Foundation of China(T2288101,12172034,U20A20390,11827803)Beijing Municipal Natural Science Foundation(7212205)the 111 project(B13003)and the Fundamental Research Funds for the Central Universities。
文摘Poly(glycerol-dodecanoate)(PGD)has aroused increasing attention in biomedical engineering for its degradability,shape memory and rubber-like mechanical properties,giving it potential to fabricate intelligent implants for soft tissues.Adjustable degradation is important for biodegradable implants and is affected by various factors.The mechanical load has been shown to play an important role in regulating polymer degradation in vivo.An in-depth investigation of PGD degradation under mechanical load is essential for adjusting its degradation behavior after implantation,further guiding to regulate degradation behavior of soft tissue implants made by PGD.In vitro degradation of PGD under different compressive and tensile load has proceeded in this study and describes the relationships by empirical equations.Based on the equations,a continuum damage model is designed to simulate surface erosion degradation of PGD under stress through finite element analysis,which provides a protocol for PGD implants with different geometric structures at varied mechanical conditions and provides solutions for predicting in vivo degradation processes,stress distribution during degradation and optimization of the loaded drug release.