Li-rich layered oxide(LRLO)cathodes have been regarded as promising candidates for next-generation Li-ion batteries due to their exceptionally high energy density,which combines cationic and anionic redox activities.H...Li-rich layered oxide(LRLO)cathodes have been regarded as promising candidates for next-generation Li-ion batteries due to their exceptionally high energy density,which combines cationic and anionic redox activities.However,continuous voltage decay during cycling remains the primary obstacle for practical applications,which has yet to be fundamentally addressed.It is widely acknowledged that voltage decay originates from the irreversible migration of transition metal ions,which usually further exacerbates structural evolution and aggravates the irreversible oxygen redox reactions.Recently,constructing O2-type structure has been considered one of the most promising approaches for inhibiting voltage decay.In this review,the relationship between voltage decay and structural evolution is systematically elucidated.Strategies to suppress voltage decay are systematically summarized.Additionally,the design of O2-type structure and the corresponding mechanism of suppressing voltage decay are comprehensively discussed.Unfortunately,the reported O2-type LRLO cathodes still exhibit partially disordered structure with extended cycles.Herein,the factors that may cause the irreversible transition metal migrations in O2-type LRLO materials are also explored,while the perspectives and challenges for designing high-performance O2-type LRLO cathodes without voltage decay are proposed.展开更多
The recycling of spent batteries has become increasingly important owing to their wide applications,abundant raw material supply,and sustainable development.Compared with the degraded cathode,spent anode graphite ofte...The recycling of spent batteries has become increasingly important owing to their wide applications,abundant raw material supply,and sustainable development.Compared with the degraded cathode,spent anode graphite often has a relatively intact structure with few defects after long cycling.Yet,most spent graphite is simply burned or discarded due to its limited value and inferior performance on using conventional recycling methods that are complex,have low efficiency,and fail in performance restoration.Herein,we propose a fast,efficient,and“intelligent”strategy to regenerate and upcycle spent graphite based on defect‐driven targeted remediation.Using Sn as a nanoscale healant,we used rapid heating(~50 ms)to enable dynamic Sn droplets to automatically nucleate around the surface defects on the graphite upon cooling owing to strong binding to the defects(~5.84 eV/atom),thus simultaneously achieving Sn dispersion and graphite remediation.As a result,the regenerated graphite showed enhanced capacity and cycle stability(458.9 mAh g^(−1) at 0.2 A g^(−1) after 100 cycles),superior to those of commercial graphite.Benefiting from the self‐adaption of Sn dispersion,spent graphite with different degrees of defects can be regenerated to similar structures and performance.EverBatt analysis indicates that targeted regeneration and upcycling have significantly lower energy consumption(~99%reduction)and near‐zero CO_(2) emission,and yield much higher profit than hydrometallurgy,which opens a new avenue for direct upcycling of spend graphite in an efficient,green,and profitable manner for sustainable battery manufacture.展开更多
Li-S batteries are regarded as one of the most promising candidates for next-generation battery systems with high energy density and low cost.However,the dissolution-precipitation reaction mechanism of the sulfur(S)ca...Li-S batteries are regarded as one of the most promising candidates for next-generation battery systems with high energy density and low cost.However,the dissolution-precipitation reaction mechanism of the sulfur(S)cathode enhances the kinetics of the redox processes of the insulating sulfu r,which also arouses the notorious shuttle effect,leading to serious loss of S species and corrosion of Li anode.To get a balance between the shuttle restraining and the kinetic property,a combined strategy of electrolyte regulation and cathode modification is proposed via introducing 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoroprpyl ether(HFE)instead of 1,2-dimethoxyethane(DME),and SeS_(7)instead of S_8.The introduction of HFE tunes the solvation structure of the LiTFSI and the dissolution of intermediate polysulfides with Se doping(LiPSSes),and optimize the interface stability of the Li anode simultaneously.The minor Se substitution compensates the decrease in kinetic due to the decreased solubility of LiPSs.In this way,the Li-SeS_(7)batteries deliver a reversible capacity of 1062 and 1037 mAh g^(-1)with 2.0 and 5.5 mg SeS_(7)cm^(-2)loading condition,respectively.Besides,an electrolyte-electrode loading model is established to explain the relationship between the optimal electrolyte and cathode loading.It makes more sense to guide the electrolyte design for practical Li-S batteries.展开更多
Prelithiation technology is widely considered a feasible route to raise the energy density and elongate the cycle life of lithium-ion batteries.The principle of prelithiation is to introduce extra active Li ions in th...Prelithiation technology is widely considered a feasible route to raise the energy density and elongate the cycle life of lithium-ion batteries.The principle of prelithiation is to introduce extra active Li ions in the battery so that the lithium loss during the first charge and long-term cycling can be compensated.Such an effect does not need to change the major electrode material or battery structure and is compatible with the majority of current lithium-ion battery production lines.At this stage,various prelithiation methods have been reported,some of which are already in the pilot-scale production stage.But there is still no definitive development roadmap for prelithiation.In this review,we first introduce the influence of prelithiation on electrochemical performance from a theoretical point of view and then compare the pros and cons of different prelithiation methods in different battery manufacturing stages.Finally,we discuss the challenges and future development trends of prelithiation.We aim to build up a bridge between academic research and industrial application.Some engineering problems in the promotion of prelithiation technique are extensively discussed,including not only the implementation of prelithiation but also some collateral issues on battery designing and management.展开更多
Iron hexacyanoferrate(FeHCF)is a promising cathode material for sodium-ion batteries.However,FeHCF always suffers from a poor cycling stability,which is closely related to the abundant vacancy defects in its framework...Iron hexacyanoferrate(FeHCF)is a promising cathode material for sodium-ion batteries.However,FeHCF always suffers from a poor cycling stability,which is closely related to the abundant vacancy defects in its framework.Herein,post-synthetic and in-situ vacancy repairing strategies are proposed for the synthesis of highquality FeHCF in a highly concentrated Na_(4)Fe(CN)_(6) solution.Both the post-synthetic and in-situ vacancy repaired FeHCF products(FeHCF-P and FeHCF-I)show the significant decrease in the number of vacancy defects and the reinforced structure,which can suppress the side reactions and activate the capacity from low-spin Fe in FeHCF.In particular,FeHCF-P delivers a reversible discharge capacity of 131 mAh g^(−1) at 1 C and remains 109 mAh g^(−1) after 500 cycles,with a capacity retention of 83%.FeHCF-I can deliver a high discharge capacity of 158.5 mAh g^(−1) at 1 C.Even at 10 C,the FeHCF-I electrode still maintains a discharge specific capacity of 103 mAh g^(−1) and retains 75% after 800 cycles.This work provides a new vacancy repairing strategy for the solution synthesis of high-quality FeHCF.展开更多
The development of polymer-based solid-state batteries is severely limited by the low ionic conductivity of solid polymer electrolyte and the instable interface between polymer electrolyte and Li-metal anode.In this w...The development of polymer-based solid-state batteries is severely limited by the low ionic conductivity of solid polymer electrolyte and the instable interface between polymer electrolyte and Li-metal anode.In this work,lithium iodide(LiI)as a bifunctional additive was introduced into the poly(ethylene oxide)(PEO)-based electrolyte to improve the ionic conductivity and to construct a stable interphase at the Li/PEO interface.I-anions offer a strong electrostatic interaction with hydrogen atoms on PEO chains(HPEO)and forming massive I–H bonds that cross-link PEO chains,decrease crystallinity of PEO,and thus improve Li~+interchain transport.In addition,LiI participates in the formation of an inorganic-rich interphase layer,which decreases the energy barrier of Li+transport across the interface and thus inhibits the growth of lithium dendrites.As a result,the composite PEO electrolyte with 2 wt%LiI(PEO-2 LiI)presents a very high ionic conductivity of 2.1×10^(-4) S cm-1 and a critical current density of 2.0 m A cm^(-2) at 45°C.Li symmetric cell with this PEO-2 LiI electrolyte exhibits a long-term cyclability over 600 h at 0.2 m A cm^(-2).Furthermore,solid-state LiFePO_(4) and LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2) batteries with the PEO-2 LiI electrolyte show an impressive electrochemical performance with outstanding cycling stability and rate capability at 45°C.展开更多
The sulfur cathodes operating via solid phase conversion of sulfur have natural advantages in suppressing polysulfide dissolution and lowering the electrolyte dosage,and thus realizing significant improvements in both...The sulfur cathodes operating via solid phase conversion of sulfur have natural advantages in suppressing polysulfide dissolution and lowering the electrolyte dosage,and thus realizing significant improvements in both cycle life and energy density.To realize an ideal solid-phase conversion of sulfur,a deep understanding of the regulation path of reaction mechanism and a corresponding intentional material and/or cathode design are highly essential.Herein,via covalently fixing of sulfur onto the triallyl isocyanurate,a series of S-triallyl isocyanurate organosulfur polymer composites(STIs) are developed.Relationship between the structure and the electrochemical conversion behavior of STIs is systematically investigated.It is found that the structure of STIs varies with the synthetic temperature,and correspondingly the electrochemical redox of sulfur can be controlled from conventional "solid-liquid-solid" conversion to the "solid-solid" one.Among the STI series,the STI-5 composite realizes an ideal solid-phase conversion and demonstrates great potential for building a Li-S battery with high-energy density and long-cyclelife:it realizes stable cycling over 1000 cycles in carbonate electrolyte,with a degradation rate of0.053% per cycle;the corresponding pouch cell shows almost no capacity decay for 125 cycles under the conditions of high sulfur loading(4.5 mg cm^(-2)) and lean electrolyte(8 μL mg_s^(-1)).In addition,the tailoring strategy of STI can also apply to other precursors with allyl functional groups to develop new organosulfur polymers for "solid-solid" sulfur cathodes.The vulcanized triallyl phosphate(STP) and triallylamine(STA) both show great lithium storage potential.This strategy successfully develops a new family of organosulfur polymers as cathodes for Li-S batteries via solid-phase conversion of sulfur,and brings insights to the mechanism study in Li-S batteries.展开更多
Sulfurized polyacrylonitrile(SPAN)as a promising cathode material for lithium sulfur(Li-S)batteries has drawn increasing attention for its improved electrochemical performance in carbonate-based electrolyte.However,th...Sulfurized polyacrylonitrile(SPAN)as a promising cathode material for lithium sulfur(Li-S)batteries has drawn increasing attention for its improved electrochemical performance in carbonate-based electrolyte.However,the relatively poor electronic and ionic conductivities of SPAN limit its high-rate and lowtemperature performances.In this work,a novel one-dimensional nanofiber SPAN(SFPAN)composite is developed as the cathode material for Li-S batteries.Benefitting from its one-dimensional nanostructure,the SFPAN composite cathode provides fast channels for the migration of ions and electronics,thus effectively improving its electrochemical performance at high rates and low temperature.As a result,the SFPAN maintains a high reversible specific capacity^1200 mAh g−1 after 400 cycles at 0.3 A g−1 and can deliver a high capacity of^850 mAh g−1 even at a high current density of 12.5 A g−1.What is more,the SFPAN can achieve a capacity of^800 mAh g−1 at 0℃and^1550 mAh g−1 at 60℃,thus providing a wider temperature range of applications.This work provides new perspectives on the cathode design for high-rate lithium-sulfur batteries.展开更多
Lithium sulfide (Li2S) provides a promising route for lithium storage due to high theoretical specific capacity (1166 mAh g-1). The electrochemical performance of Li2S can be significantly enhanced by forming Li2S-car...Lithium sulfide (Li2S) provides a promising route for lithium storage due to high theoretical specific capacity (1166 mAh g-1). The electrochemical performance of Li2S can be significantly enhanced by forming Li2S-carbon composites with the introduction of carbon. However, the complex synthesis method of Li2S-carbon composites restrains the large-scale productivity. Herein, we propose a facile route to prepare carbon coated Li2S-carbon nanotube composites (Li2S@C-CNT) via spray drying and heat treatment, which is a low-cost and large-scale method for facile synthesis of Li2S-carbon composites. For the Li2S@C-CNT composites, Li2S nanoparticles are contacted with surrounding particles due to the 3D CNTs framework. The novel construction not only suppresses the diffusion of polysulfides during cycling, but also remarkably accelerates the transport of electron and ion, resulting in a high specific capacity (1100 mAh g^-1) and good cycling performance. The rational designed architecture and good electrochemical performance of Li2S@C-CNT will pave the avenue for realizing high energy density of Li2S-based batteries.展开更多
LiCoO_(2) is the preferred cathode material for consumer electronic products due to its high volumetric energy density. However, the unfavorable phase transition and surface oxygen release limits the practical applica...LiCoO_(2) is the preferred cathode material for consumer electronic products due to its high volumetric energy density. However, the unfavorable phase transition and surface oxygen release limits the practical application of LiCoO_(2)at a high-voltage of 4.6 V to achieve a higher energy density demanded by the market. Herein, both bulk and surface structures of LiCoO_(2)are stabilized at 4.6 V through oxygen charge regulation by Gd-gradient doping. The enrichment of highly electropositive Gd on LiCoO_(2) surface will increase the effective charge on oxygen and improve the oxygen framework stability against oxygen loss.On the other hand, Gd ions occupy the Co-sites and suppress the unfavorable phase transition and microcrack. The modified LiCoO_(2) exhibits superior cycling stability with capacity retention of 90.1% over 200 cycles at 4.6 V, and also obtains a high capacity of 145.7 m Ah/g at 5 C. This work shows great promise for developing high-voltage LiCoO_(2) at 4.6 V and the strategy could also contribute to optimizing other cathode materials with high voltage and large capacity, such as cobalt-free high-nickel and lithiumrich manganese-based cathode materials.展开更多
Lithium-selenium(Li-Se) battery is a promising system with high theoretical gravimetric and volumetric energy densities, while its long-term cyclability is hard to realize, especially when a practical Se cathode with ...Lithium-selenium(Li-Se) battery is a promising system with high theoretical gravimetric and volumetric energy densities, while its long-term cyclability is hard to realize, especially when a practical Se cathode with high Se content, high Se loading, and high density is employed. The main obstacles are the sluggish conversion kinetics of the dense Se cathodes and the continuous deterioration of the Li-metal anodes.Here, by introducing an acetonitrile(AN)-based electrolyte and replacing the Li electrode with a lithiated graphite, we successfully build a hybrid conversion-intercalation system using a high-content(80 wt%),decent-loading(3.0 mg cm^(-2)), and low-porosity(44%) Se cathode. The as-designed lithiated graphite||Se(LG||Se) cell demonstrated a high Se utilization(97.4%), a long cycle life(3000 cycles), and an ultrahigh average Coulombic efficiency(99.98%). The cell also works well under lean-electrolyte(2 l L mg^(-1)) condition and shows outstanding safety performance in the nail-penetrating test. The combination affords the competitive comprehensive performances, including high volumetric and gravimetric energy densities, long cycling life, and superb safety of the LG||Se cell. In addition, with a newly-designed threeelectrode pouch cell, the lithiation of the graphite anodes could be done with an in-situ lithiation process,indicating the high potential of the as-proposed LG||Se cell for the practical applications.展开更多
Lithium(Li)metal electrodes show significantly different reversibility in the electrolytes with different salts.However,the understanding on how the salts impact on the Li loss remains unclear.Herein,using the electro...Lithium(Li)metal electrodes show significantly different reversibility in the electrolytes with different salts.However,the understanding on how the salts impact on the Li loss remains unclear.Herein,using the electrolytes with different salts(e.g.,lithium hexafluorophosphate(LiPF_(6)),lithium difluoro(oxalato)borate(LiDFOB),and lithium bis(fluorosulfonyl)amide(LiFSI))as examples,we decouple the irreversible Li loss(SEI Li^(+)and“dead”Li)during cycling.It is found that the accumulation of both SEI Li^(+)and“dead”Li may be responsible to the irreversible Li loss for the Li metal in the electrolyte with LiPF_(6)salt.While for the electrolytes with LiDFOB and LiFSI salts,the accumulation of“dead”Li predominates the Li loss.We also demonstrate that lithium nitrate and fluoroethylene carbonate additives could,respectively,function as the“dead”Li and SEI Li^(+)inhibitors.Inspired by the above understandings,we propose a universal procedure for the electrolyte design of Li metal batteries(LMBs):(i)decouple and find the main reason for the irreversible Li loss;(ii)add the corresponding electrolyte additive.With such a Li-loss-targeted strategy,the Li reversibility was significantly enhanced in the electrolytes with 1,2-dimethoxyethane,triethyl phosphate,and tetrahydrofuran solvents.Our strategy may broaden the scope of electrolyte design toward practical LMBs.展开更多
Polymer materials offer controllable structure-dependent performances in separation,catalysis and drug release.Their molecular structures can be precisely tailored to accept Li^(+)for energy storage applications.Here ...Polymer materials offer controllable structure-dependent performances in separation,catalysis and drug release.Their molecular structures can be precisely tailored to accept Li^(+)for energy storage applications.Here the design of sp^(2)carbon-based polyphenylene(PPH)with high lithium-ion uptakes and long-term stability is reported.Linear-PPH(L-PPH)exceeds the performance of crosslink-PPH(C-PPH),due to the fact that it has an ordered lamellar structure,promoting the Li^(+)intercalation/deintercalation channel.The L-PPH cell shows a clear charge and discharge plateau at 0.35 and 0.15 V vs.Li^(+)/Li,respectively,which is absent in the C-PPH cell.The Li^(+)storage capacity of L-PPH is five times that of the C-PPH.The reversible storage capacity is further improved to 261 m Ah g;by functionalizing the L-PPH with the–SO_(3)H groups.In addition,the Li-intercalated structures of C-PPH and L-PPH are investigated via near-edge X-ray absorption fine structure(NEXAFS),suggesting the high reversible Li^(+)–C=C bond interaction at L-PPH.This strategy,based on new insight into sp^(2)functional groups,is the first step toward a molecular understanding of the structure storage-capacity relationship in sp^(2)carbon-based polymer.展开更多
The application of solid polymer electrolytes(SPEs)is severely impeded by the insufficient ionic conductivity and low Li^(+)transference numbers(t_(Li)^(+)).Here,we report an iodine-driven strategy to address both the...The application of solid polymer electrolytes(SPEs)is severely impeded by the insufficient ionic conductivity and low Li^(+)transference numbers(t_(Li)^(+)).Here,we report an iodine-driven strategy to address both the two longstanding issues of SPEs simultaneously.Electronegative lodine-containing groups introduced on polymer chains effectively attract Li^(+)ions,facilitate Li^(+)transport,and promote the dissociation of Li salts.Meanwhile,iodine is also favorable to alleviate the strong O-Li^(+)coordination through a Lewis acidbase interaction,further improving the ionic conductivity and t_(Li)^(+).As a proof of concept,an iodinated single-ion conducting polymer electrolyte(IPE)demonstrates a high ionic conductivity of 0.93 mS cm^(-1)and a high t_(Li)^(+)of 0.86 at 25℃,which is among the best results ever reported for SPEs.Moreover,symmetric Li/Li cells with IPE achieve a long-term stability over 2600 h through the in-situ formed LiF-rich interphase.As a result,Li-S battery with IPE maintains a high capacity of 623.7 mAh g^(-1)over 300 cycles with an average Coulombic efficiency of 99%.When matched with intercalation cathode chemistries,Li/IPE/LiFePO_(4)and Li/IPE/LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)solid-state batteries also deliver high-capacity retentions of 95%and 97%at 0.2 C after 120 cycles,respectively.展开更多
With the proposal of a“smart battery,”real-time sensing by rechargeable batteries has become progressively more important in both fundamental research and practical applications.However,many traditional sensing tech...With the proposal of a“smart battery,”real-time sensing by rechargeable batteries has become progressively more important in both fundamental research and practical applications.However,many traditional sensing technologies suffer from low sensitivity,large size,and electromagnetic interference problems,rendering them unusable in the harsh and complicated electrochemical environments of batteries.The optical sensor is an alternative approach to realize multiple-parameter,multiple-point measurements simultaneously.Thus,it has garnered significant attention.Through analyzing these measured parameters,the state of interest can be decoded to monitor a battery's health.This review summarizes current progress in optical sensing techniques for batteries with respect to various sensing parameters,discussing the current limitations of optical fiber sensors as well as directions for their future development.展开更多
Solid-state polymer electrolytes(SPEs)are candidate schemes for meeting the safety and energy density needs of advanced lithium-based battery because of their improved mechanical and electrochemical stability compared...Solid-state polymer electrolytes(SPEs)are candidate schemes for meeting the safety and energy density needs of advanced lithium-based battery because of their improved mechanical and electrochemical stability compared to traditional liquid electrolytes.However,low ionic conductivity and side reactions occurring in traditional high-voltage lithium metal batteries(LMBs)hinder their practical applications.Here,amino-modified metal-organic frameworks(UiO-66-NH_(2))with abundant defects as multifunctional fillers in the polyurethane based SPEs achieve the collaborative promotion of the mechanical strength and room temperature ionic conductivity.The surface modified amino groups serve as anchoring points for oxygen atoms of polymer chains,forming a firmly hydrogen-bond interface with polycarbonate-based polyurethane frameworks.The rich interfaces between UiO-66-NH_(2) and polymers dramatically decrease the crystallization of polymer chains and reduce ion transport impedance,which markedly boosted the ionic conductivity to 2.1×10^(−4) S·cm^(−1) with a high Li+transference numbers of 0.71.As a result,LiFePO4∣SPEs∣Li cells exhibit prominent cyclability for 700 cycles under 0.5 C with 96.5%capacity retention.The LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM622)∣SPEs∣Li cells deliver excellent long-term lifespan for 260 cycles with a high capacity retention of 91.9%and high average Coulombic efficiency(98.5%)under ambient conditions.This simple and effective hybrid SPE design strategy sheds a milestone significance light for high-voltage Li-metal batteries.展开更多
锂金属负极和碳酸酯类电解液之间不稳定的界面是限制高比能锂金属电池循环寿命的关键挑战.本文使用含苯环的双酚A乙氧基化物二甲基丙烯酸酯(BAED)交联剂调节聚(丙烯酸六氟丁酯)(PHFBA),设计了一种弹性人造固体电解质中间相(RASEI)来解...锂金属负极和碳酸酯类电解液之间不稳定的界面是限制高比能锂金属电池循环寿命的关键挑战.本文使用含苯环的双酚A乙氧基化物二甲基丙烯酸酯(BAED)交联剂调节聚(丙烯酸六氟丁酯)(PHFBA),设计了一种弹性人造固体电解质中间相(RASEI)来解决这个问题.刚性BAED分子可以对柔性PHBA基体进行调控,实现从600%伸长率到90%压缩率的卓越回弹性,并具有超过2 MPa的高杨氏模量.RASEI可以适应锂金属较大的体积变化,并确保电池运行过程中锂金属与RASEI之间的紧密接触,促进均匀的锂沉积并减少副反应.因此,经过RASEI修饰的Li‖Li对称电池可以在1 mA cm^(-2)和1 mAh cm^(-2)下实现超过500小时的长期循环.对循环后锂金属进行测试分析表明锂枝晶的生长得到了有效的抑制.此外,搭配20 mg cm^(-2)高阴极负载的NCM811软包电池在1 C下,经过200次循环后容量保持率超过85%.展开更多
Solid-state Li-metal batteries(SSLMBs)have emerged as a highly promising next-generation energy storage solution,offering the potential to fulfill the energy and safety requirements of various applications,including e...Solid-state Li-metal batteries(SSLMBs)have emerged as a highly promising next-generation energy storage solution,offering the potential to fulfill the energy and safety requirements of various applications,including electric vehicles and portable 3C devices.Interfaces,serving as essential components of electrochemistry,play a pivotal role in the performance and reliability of SSLMBs[1].展开更多
Lithium(Li)-metal batteries with polymer electrolytes are promising for high-energy-density and safe energy storage applications.However,current polymer electrolytes suffer either low ionic conductivity or inadequate ...Lithium(Li)-metal batteries with polymer electrolytes are promising for high-energy-density and safe energy storage applications.However,current polymer electrolytes suffer either low ionic conductivity or inadequate ability to suppress Li dendrite growth at high current densities.This study addresses both issues by incorporating two-dimensional oxygenated carbon nitride(2D OCN)into a polyvinylidene fluoride(PVDF)-based composite polymer electrolyte and modifying the Li anode with OCN.The OCN nanosheets incorporated PVDF electrolyte exhibits a high ionic conductivity(1.6×10^(-4)S cm^(-1)at 25℃)and Li+transference number(0.62),wide electrochemical window(5.3),and excellent fire resistance.Furthermore,the OCN-modified Li anode in situ generates a protective layer of Li_(3)N during cycling,preventing undesirable reactions with PVDF electrolyte and effectively suppressing Li dendrite growth.Symmetric cells using the upgraded PVDF polymer electrolyte and modified Li anode demonstrate long cycling stability over 2500 h at 0.1 mA cm^(-2).Full cells with a high-voltage LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)cathode exhibit high energy density and long-term cycling stability,even at a high loading of 8.2 mg cm^(-2).Incorporating 2D OCN nanosheets into the PVDF-based electrolyte and Li-metal anode provides an effective strategy for achieving safe and high-energy-density Li-metal batteries.展开更多
Micron-sized silicon(μSi)is a promising anode material for next-generation lithium-ion batteries due to its high specific capacity,low cost,and abundant reserves.However,the volume expansion that occurs during cyclin...Micron-sized silicon(μSi)is a promising anode material for next-generation lithium-ion batteries due to its high specific capacity,low cost,and abundant reserves.However,the volume expansion that occurs during cycling leads to the accumulation of undesirable stresses,resulting in pulverization of silicon microparticles and shortened lifespan of the batteries.Herein,a composite film of Cu-PET-Cu is proposed as the current collector(CC)forμSi anodes to replace the conventional Cu CC.Cu-PET-Cu CC is prepared by depositing Cu on both sides of a polyethylene terephthalate(PET)film.The PET layer promises good ductility of the film,permitting the Cu-PET-Cu CC to accommodate the volumetric changes of silicon microparticles and facilitates the stress release through ductile deformation.As a result,theμSi electrode with Cu-PET-Cu CC retains a high specific capacity of 2181 mA h g^(-1),whereas theμSi electrode with Cu CC(μSi/Cu)exhibits a specific capacity of 1285 mA h g^(-1)after 80 cycles.The stress relieving effect of CuPET-Cu was demonstrated by in-situ fiber optic stress monitoring and multi-physics simulations.This work proposes an effective stress relief strategy at the electrode level for the practical implementation ofμSi anodes.展开更多
基金funded by the National Natural Science Foundation of China(Grant Nos.22279092 and 5202780089).
文摘Li-rich layered oxide(LRLO)cathodes have been regarded as promising candidates for next-generation Li-ion batteries due to their exceptionally high energy density,which combines cationic and anionic redox activities.However,continuous voltage decay during cycling remains the primary obstacle for practical applications,which has yet to be fundamentally addressed.It is widely acknowledged that voltage decay originates from the irreversible migration of transition metal ions,which usually further exacerbates structural evolution and aggravates the irreversible oxygen redox reactions.Recently,constructing O2-type structure has been considered one of the most promising approaches for inhibiting voltage decay.In this review,the relationship between voltage decay and structural evolution is systematically elucidated.Strategies to suppress voltage decay are systematically summarized.Additionally,the design of O2-type structure and the corresponding mechanism of suppressing voltage decay are comprehensively discussed.Unfortunately,the reported O2-type LRLO cathodes still exhibit partially disordered structure with extended cycles.Herein,the factors that may cause the irreversible transition metal migrations in O2-type LRLO materials are also explored,while the perspectives and challenges for designing high-performance O2-type LRLO cathodes without voltage decay are proposed.
基金The Fundamental Research Funds for the Central Universities,HUST,Grant/Award Number:2021GCRC046The Open Fund of State Key Laboratory of New Textile Materials and Advanced Processing Technologies,Grant/Award Number:FZ2022005Natural Science Foundation of Hubei Province,China,Grant/Award Number:2022CFA031。
文摘The recycling of spent batteries has become increasingly important owing to their wide applications,abundant raw material supply,and sustainable development.Compared with the degraded cathode,spent anode graphite often has a relatively intact structure with few defects after long cycling.Yet,most spent graphite is simply burned or discarded due to its limited value and inferior performance on using conventional recycling methods that are complex,have low efficiency,and fail in performance restoration.Herein,we propose a fast,efficient,and“intelligent”strategy to regenerate and upcycle spent graphite based on defect‐driven targeted remediation.Using Sn as a nanoscale healant,we used rapid heating(~50 ms)to enable dynamic Sn droplets to automatically nucleate around the surface defects on the graphite upon cooling owing to strong binding to the defects(~5.84 eV/atom),thus simultaneously achieving Sn dispersion and graphite remediation.As a result,the regenerated graphite showed enhanced capacity and cycle stability(458.9 mAh g^(−1) at 0.2 A g^(−1) after 100 cycles),superior to those of commercial graphite.Benefiting from the self‐adaption of Sn dispersion,spent graphite with different degrees of defects can be regenerated to similar structures and performance.EverBatt analysis indicates that targeted regeneration and upcycling have significantly lower energy consumption(~99%reduction)and near‐zero CO_(2) emission,and yield much higher profit than hydrometallurgy,which opens a new avenue for direct upcycling of spend graphite in an efficient,green,and profitable manner for sustainable battery manufacture.
基金supported by the National Natural Science Foundation of China(22075091)the Natural Science Foundation of Hubei Province(Grant No.2021CFA066)。
文摘Li-S batteries are regarded as one of the most promising candidates for next-generation battery systems with high energy density and low cost.However,the dissolution-precipitation reaction mechanism of the sulfur(S)cathode enhances the kinetics of the redox processes of the insulating sulfu r,which also arouses the notorious shuttle effect,leading to serious loss of S species and corrosion of Li anode.To get a balance between the shuttle restraining and the kinetic property,a combined strategy of electrolyte regulation and cathode modification is proposed via introducing 1,1,2,2-tetrafluoroethyl-2,2,3,3-tetrafluoroprpyl ether(HFE)instead of 1,2-dimethoxyethane(DME),and SeS_(7)instead of S_8.The introduction of HFE tunes the solvation structure of the LiTFSI and the dissolution of intermediate polysulfides with Se doping(LiPSSes),and optimize the interface stability of the Li anode simultaneously.The minor Se substitution compensates the decrease in kinetic due to the decreased solubility of LiPSs.In this way,the Li-SeS_(7)batteries deliver a reversible capacity of 1062 and 1037 mAh g^(-1)with 2.0 and 5.5 mg SeS_(7)cm^(-2)loading condition,respectively.Besides,an electrolyte-electrode loading model is established to explain the relationship between the optimal electrolyte and cathode loading.It makes more sense to guide the electrolyte design for practical Li-S batteries.
基金National Natural Science Foundation of China,Grant/Award Numbers:22179045,5202780089。
文摘Prelithiation technology is widely considered a feasible route to raise the energy density and elongate the cycle life of lithium-ion batteries.The principle of prelithiation is to introduce extra active Li ions in the battery so that the lithium loss during the first charge and long-term cycling can be compensated.Such an effect does not need to change the major electrode material or battery structure and is compatible with the majority of current lithium-ion battery production lines.At this stage,various prelithiation methods have been reported,some of which are already in the pilot-scale production stage.But there is still no definitive development roadmap for prelithiation.In this review,we first introduce the influence of prelithiation on electrochemical performance from a theoretical point of view and then compare the pros and cons of different prelithiation methods in different battery manufacturing stages.Finally,we discuss the challenges and future development trends of prelithiation.We aim to build up a bridge between academic research and industrial application.Some engineering problems in the promotion of prelithiation technique are extensively discussed,including not only the implementation of prelithiation but also some collateral issues on battery designing and management.
基金supported by the projects of the National Key R&D Program of China(2016YFB0100302)the National Natural Science Foundation of China(Grant No.60306011).
文摘Iron hexacyanoferrate(FeHCF)is a promising cathode material for sodium-ion batteries.However,FeHCF always suffers from a poor cycling stability,which is closely related to the abundant vacancy defects in its framework.Herein,post-synthetic and in-situ vacancy repairing strategies are proposed for the synthesis of highquality FeHCF in a highly concentrated Na_(4)Fe(CN)_(6) solution.Both the post-synthetic and in-situ vacancy repaired FeHCF products(FeHCF-P and FeHCF-I)show the significant decrease in the number of vacancy defects and the reinforced structure,which can suppress the side reactions and activate the capacity from low-spin Fe in FeHCF.In particular,FeHCF-P delivers a reversible discharge capacity of 131 mAh g^(−1) at 1 C and remains 109 mAh g^(−1) after 500 cycles,with a capacity retention of 83%.FeHCF-I can deliver a high discharge capacity of 158.5 mAh g^(−1) at 1 C.Even at 10 C,the FeHCF-I electrode still maintains a discharge specific capacity of 103 mAh g^(−1) and retains 75% after 800 cycles.This work provides a new vacancy repairing strategy for the solution synthesis of high-quality FeHCF.
基金supported by the National Science Foundation of China(Grant No.5202780089)the Fundamental Research Funds for the Central Universities(HUST:2172020kfy XJJS089)。
文摘The development of polymer-based solid-state batteries is severely limited by the low ionic conductivity of solid polymer electrolyte and the instable interface between polymer electrolyte and Li-metal anode.In this work,lithium iodide(LiI)as a bifunctional additive was introduced into the poly(ethylene oxide)(PEO)-based electrolyte to improve the ionic conductivity and to construct a stable interphase at the Li/PEO interface.I-anions offer a strong electrostatic interaction with hydrogen atoms on PEO chains(HPEO)and forming massive I–H bonds that cross-link PEO chains,decrease crystallinity of PEO,and thus improve Li~+interchain transport.In addition,LiI participates in the formation of an inorganic-rich interphase layer,which decreases the energy barrier of Li+transport across the interface and thus inhibits the growth of lithium dendrites.As a result,the composite PEO electrolyte with 2 wt%LiI(PEO-2 LiI)presents a very high ionic conductivity of 2.1×10^(-4) S cm-1 and a critical current density of 2.0 m A cm^(-2) at 45°C.Li symmetric cell with this PEO-2 LiI electrolyte exhibits a long-term cyclability over 600 h at 0.2 m A cm^(-2).Furthermore,solid-state LiFePO_(4) and LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2) batteries with the PEO-2 LiI electrolyte show an impressive electrochemical performance with outstanding cycling stability and rate capability at 45°C.
基金supported by the National Science Foundation of China (22075091)the National Science Foundation of Hubei Province (2021CFA066)。
文摘The sulfur cathodes operating via solid phase conversion of sulfur have natural advantages in suppressing polysulfide dissolution and lowering the electrolyte dosage,and thus realizing significant improvements in both cycle life and energy density.To realize an ideal solid-phase conversion of sulfur,a deep understanding of the regulation path of reaction mechanism and a corresponding intentional material and/or cathode design are highly essential.Herein,via covalently fixing of sulfur onto the triallyl isocyanurate,a series of S-triallyl isocyanurate organosulfur polymer composites(STIs) are developed.Relationship between the structure and the electrochemical conversion behavior of STIs is systematically investigated.It is found that the structure of STIs varies with the synthetic temperature,and correspondingly the electrochemical redox of sulfur can be controlled from conventional "solid-liquid-solid" conversion to the "solid-solid" one.Among the STI series,the STI-5 composite realizes an ideal solid-phase conversion and demonstrates great potential for building a Li-S battery with high-energy density and long-cyclelife:it realizes stable cycling over 1000 cycles in carbonate electrolyte,with a degradation rate of0.053% per cycle;the corresponding pouch cell shows almost no capacity decay for 125 cycles under the conditions of high sulfur loading(4.5 mg cm^(-2)) and lean electrolyte(8 μL mg_s^(-1)).In addition,the tailoring strategy of STI can also apply to other precursors with allyl functional groups to develop new organosulfur polymers for "solid-solid" sulfur cathodes.The vulcanized triallyl phosphate(STP) and triallylamine(STA) both show great lithium storage potential.This strategy successfully develops a new family of organosulfur polymers as cathodes for Li-S batteries via solid-phase conversion of sulfur,and brings insights to the mechanism study in Li-S batteries.
基金supported by the National Natural Science Foundation of China(Grant nos.21773077,51632001,and 51532005)the Ministry of Science and Technology“973”program(Grant No.2015CB258400)the National Key R&D Program of China(2018YFB0905400)。
文摘Sulfurized polyacrylonitrile(SPAN)as a promising cathode material for lithium sulfur(Li-S)batteries has drawn increasing attention for its improved electrochemical performance in carbonate-based electrolyte.However,the relatively poor electronic and ionic conductivities of SPAN limit its high-rate and lowtemperature performances.In this work,a novel one-dimensional nanofiber SPAN(SFPAN)composite is developed as the cathode material for Li-S batteries.Benefitting from its one-dimensional nanostructure,the SFPAN composite cathode provides fast channels for the migration of ions and electronics,thus effectively improving its electrochemical performance at high rates and low temperature.As a result,the SFPAN maintains a high reversible specific capacity^1200 mAh g−1 after 400 cycles at 0.3 A g−1 and can deliver a high capacity of^850 mAh g−1 even at a high current density of 12.5 A g−1.What is more,the SFPAN can achieve a capacity of^800 mAh g−1 at 0℃and^1550 mAh g−1 at 60℃,thus providing a wider temperature range of applications.This work provides new perspectives on the cathode design for high-rate lithium-sulfur batteries.
基金supported by the National Basic Research Program of China (973 Program, 2015CB258400)the National Science Foundation of China (Grant Nos. 21773077 and 51532005)the Program for HUST Interdisciplinary Innovation Team (2015ZDTD021)
文摘Lithium sulfide (Li2S) provides a promising route for lithium storage due to high theoretical specific capacity (1166 mAh g-1). The electrochemical performance of Li2S can be significantly enhanced by forming Li2S-carbon composites with the introduction of carbon. However, the complex synthesis method of Li2S-carbon composites restrains the large-scale productivity. Herein, we propose a facile route to prepare carbon coated Li2S-carbon nanotube composites (Li2S@C-CNT) via spray drying and heat treatment, which is a low-cost and large-scale method for facile synthesis of Li2S-carbon composites. For the Li2S@C-CNT composites, Li2S nanoparticles are contacted with surrounding particles due to the 3D CNTs framework. The novel construction not only suppresses the diffusion of polysulfides during cycling, but also remarkably accelerates the transport of electron and ion, resulting in a high specific capacity (1100 mAh g^-1) and good cycling performance. The rational designed architecture and good electrochemical performance of Li2S@C-CNT will pave the avenue for realizing high energy density of Li2S-based batteries.
基金supported by the National Natural Science Foundation of China (52102249, 52172201, 51732005, 51902118)the China Postdoctoral Science Foundation (2019M662609 and 2020T130217)+1 种基金the international postdoctoral exchange fellowship program (PC2021026)the Major Technological Innovation Project of Hubei Province (2019AAA019) for financial support。
文摘LiCoO_(2) is the preferred cathode material for consumer electronic products due to its high volumetric energy density. However, the unfavorable phase transition and surface oxygen release limits the practical application of LiCoO_(2)at a high-voltage of 4.6 V to achieve a higher energy density demanded by the market. Herein, both bulk and surface structures of LiCoO_(2)are stabilized at 4.6 V through oxygen charge regulation by Gd-gradient doping. The enrichment of highly electropositive Gd on LiCoO_(2) surface will increase the effective charge on oxygen and improve the oxygen framework stability against oxygen loss.On the other hand, Gd ions occupy the Co-sites and suppress the unfavorable phase transition and microcrack. The modified LiCoO_(2) exhibits superior cycling stability with capacity retention of 90.1% over 200 cycles at 4.6 V, and also obtains a high capacity of 145.7 m Ah/g at 5 C. This work shows great promise for developing high-voltage LiCoO_(2) at 4.6 V and the strategy could also contribute to optimizing other cathode materials with high voltage and large capacity, such as cobalt-free high-nickel and lithiumrich manganese-based cathode materials.
基金supported by the National Natural Science Foundation of China under Grant No. 51802225the funding from the State Key Laboratory of Materials Processing and Die & Mould Technology, Huazhong University of Science and Technology (P2020-001)。
文摘Lithium-selenium(Li-Se) battery is a promising system with high theoretical gravimetric and volumetric energy densities, while its long-term cyclability is hard to realize, especially when a practical Se cathode with high Se content, high Se loading, and high density is employed. The main obstacles are the sluggish conversion kinetics of the dense Se cathodes and the continuous deterioration of the Li-metal anodes.Here, by introducing an acetonitrile(AN)-based electrolyte and replacing the Li electrode with a lithiated graphite, we successfully build a hybrid conversion-intercalation system using a high-content(80 wt%),decent-loading(3.0 mg cm^(-2)), and low-porosity(44%) Se cathode. The as-designed lithiated graphite||Se(LG||Se) cell demonstrated a high Se utilization(97.4%), a long cycle life(3000 cycles), and an ultrahigh average Coulombic efficiency(99.98%). The cell also works well under lean-electrolyte(2 l L mg^(-1)) condition and shows outstanding safety performance in the nail-penetrating test. The combination affords the competitive comprehensive performances, including high volumetric and gravimetric energy densities, long cycling life, and superb safety of the LG||Se cell. In addition, with a newly-designed threeelectrode pouch cell, the lithiation of the graphite anodes could be done with an in-situ lithiation process,indicating the high potential of the as-proposed LG||Se cell for the practical applications.
基金This work was supported by the National Key Research and Development Program(2021YFB2400300)the National Natural Science Foundation of China(52272203)the Fundamental Research Funds for the Central Universities(2021GCRC001).
文摘Lithium(Li)metal electrodes show significantly different reversibility in the electrolytes with different salts.However,the understanding on how the salts impact on the Li loss remains unclear.Herein,using the electrolytes with different salts(e.g.,lithium hexafluorophosphate(LiPF_(6)),lithium difluoro(oxalato)borate(LiDFOB),and lithium bis(fluorosulfonyl)amide(LiFSI))as examples,we decouple the irreversible Li loss(SEI Li^(+)and“dead”Li)during cycling.It is found that the accumulation of both SEI Li^(+)and“dead”Li may be responsible to the irreversible Li loss for the Li metal in the electrolyte with LiPF_(6)salt.While for the electrolytes with LiDFOB and LiFSI salts,the accumulation of“dead”Li predominates the Li loss.We also demonstrate that lithium nitrate and fluoroethylene carbonate additives could,respectively,function as the“dead”Li and SEI Li^(+)inhibitors.Inspired by the above understandings,we propose a universal procedure for the electrolyte design of Li metal batteries(LMBs):(i)decouple and find the main reason for the irreversible Li loss;(ii)add the corresponding electrolyte additive.With such a Li-loss-targeted strategy,the Li reversibility was significantly enhanced in the electrolytes with 1,2-dimethoxyethane,triethyl phosphate,and tetrahydrofuran solvents.Our strategy may broaden the scope of electrolyte design toward practical LMBs.
基金funded by the Engineering and Physical Sciences Research Council(EPSRC)(EP/P02467X/1 and EP/S018204/1)the Centre for Nature Inspired Chemical Engineering(EP K038656/1)。
文摘Polymer materials offer controllable structure-dependent performances in separation,catalysis and drug release.Their molecular structures can be precisely tailored to accept Li^(+)for energy storage applications.Here the design of sp^(2)carbon-based polyphenylene(PPH)with high lithium-ion uptakes and long-term stability is reported.Linear-PPH(L-PPH)exceeds the performance of crosslink-PPH(C-PPH),due to the fact that it has an ordered lamellar structure,promoting the Li^(+)intercalation/deintercalation channel.The L-PPH cell shows a clear charge and discharge plateau at 0.35 and 0.15 V vs.Li^(+)/Li,respectively,which is absent in the C-PPH cell.The Li^(+)storage capacity of L-PPH is five times that of the C-PPH.The reversible storage capacity is further improved to 261 m Ah g;by functionalizing the L-PPH with the–SO_(3)H groups.In addition,the Li-intercalated structures of C-PPH and L-PPH are investigated via near-edge X-ray absorption fine structure(NEXAFS),suggesting the high reversible Li^(+)–C=C bond interaction at L-PPH.This strategy,based on new insight into sp^(2)functional groups,is the first step toward a molecular understanding of the structure storage-capacity relationship in sp^(2)carbon-based polymer.
基金supported by the National Science Foundation of China(Grant No.5202780089)the Fundamental Research Funds for the Central Universities(HUST:2172020kfy XJJS089)the Open Research Fund of CNMGE Platform&NSCC-TJ(Grant No.CNMGE202101006)
文摘The application of solid polymer electrolytes(SPEs)is severely impeded by the insufficient ionic conductivity and low Li^(+)transference numbers(t_(Li)^(+)).Here,we report an iodine-driven strategy to address both the two longstanding issues of SPEs simultaneously.Electronegative lodine-containing groups introduced on polymer chains effectively attract Li^(+)ions,facilitate Li^(+)transport,and promote the dissociation of Li salts.Meanwhile,iodine is also favorable to alleviate the strong O-Li^(+)coordination through a Lewis acidbase interaction,further improving the ionic conductivity and t_(Li)^(+).As a proof of concept,an iodinated single-ion conducting polymer electrolyte(IPE)demonstrates a high ionic conductivity of 0.93 mS cm^(-1)and a high t_(Li)^(+)of 0.86 at 25℃,which is among the best results ever reported for SPEs.Moreover,symmetric Li/Li cells with IPE achieve a long-term stability over 2600 h through the in-situ formed LiF-rich interphase.As a result,Li-S battery with IPE maintains a high capacity of 623.7 mAh g^(-1)over 300 cycles with an average Coulombic efficiency of 99%.When matched with intercalation cathode chemistries,Li/IPE/LiFePO_(4)and Li/IPE/LiNi_(0.8)Mn_(0.1)Co_(0.1)O_(2)solid-state batteries also deliver high-capacity retentions of 95%and 97%at 0.2 C after 120 cycles,respectively.
基金the support from the National Key R&D Program of China(2021YFB2400300)the National Natural Science Foundation of China(Nos.51972131 and 5202780089).
文摘With the proposal of a“smart battery,”real-time sensing by rechargeable batteries has become progressively more important in both fundamental research and practical applications.However,many traditional sensing technologies suffer from low sensitivity,large size,and electromagnetic interference problems,rendering them unusable in the harsh and complicated electrochemical environments of batteries.The optical sensor is an alternative approach to realize multiple-parameter,multiple-point measurements simultaneously.Thus,it has garnered significant attention.Through analyzing these measured parameters,the state of interest can be decoded to monitor a battery's health.This review summarizes current progress in optical sensing techniques for batteries with respect to various sensing parameters,discussing the current limitations of optical fiber sensors as well as directions for their future development.
基金financially supported by the National Natural Science Foundation of China(Nos.52202236 and 5202780089)China Postdoctoral Science Foundation(Nos.2024T170300 and 2022M711232).
文摘Solid-state polymer electrolytes(SPEs)are candidate schemes for meeting the safety and energy density needs of advanced lithium-based battery because of their improved mechanical and electrochemical stability compared to traditional liquid electrolytes.However,low ionic conductivity and side reactions occurring in traditional high-voltage lithium metal batteries(LMBs)hinder their practical applications.Here,amino-modified metal-organic frameworks(UiO-66-NH_(2))with abundant defects as multifunctional fillers in the polyurethane based SPEs achieve the collaborative promotion of the mechanical strength and room temperature ionic conductivity.The surface modified amino groups serve as anchoring points for oxygen atoms of polymer chains,forming a firmly hydrogen-bond interface with polycarbonate-based polyurethane frameworks.The rich interfaces between UiO-66-NH_(2) and polymers dramatically decrease the crystallization of polymer chains and reduce ion transport impedance,which markedly boosted the ionic conductivity to 2.1×10^(−4) S·cm^(−1) with a high Li+transference numbers of 0.71.As a result,LiFePO4∣SPEs∣Li cells exhibit prominent cyclability for 700 cycles under 0.5 C with 96.5%capacity retention.The LiNi_(0.6)Co_(0.2)Mn_(0.2)O_(2)(NCM622)∣SPEs∣Li cells deliver excellent long-term lifespan for 260 cycles with a high capacity retention of 91.9%and high average Coulombic efficiency(98.5%)under ambient conditions.This simple and effective hybrid SPE design strategy sheds a milestone significance light for high-voltage Li-metal batteries.
基金supported by National Key R&D Program of China(2023YFB2503801)the National Natural Science Foundation of China(Grant Nos.52302253,and 5202780089)+2 种基金the Key Program of the National Natural Science Foundation of China(Grant No.52231009)the Fundamental Research Funds for the Central Universities(HUST:2172020kfyXJJS089)Key R&D Program of Hubei Province(2023BAB028)。
文摘锂金属负极和碳酸酯类电解液之间不稳定的界面是限制高比能锂金属电池循环寿命的关键挑战.本文使用含苯环的双酚A乙氧基化物二甲基丙烯酸酯(BAED)交联剂调节聚(丙烯酸六氟丁酯)(PHFBA),设计了一种弹性人造固体电解质中间相(RASEI)来解决这个问题.刚性BAED分子可以对柔性PHBA基体进行调控,实现从600%伸长率到90%压缩率的卓越回弹性,并具有超过2 MPa的高杨氏模量.RASEI可以适应锂金属较大的体积变化,并确保电池运行过程中锂金属与RASEI之间的紧密接触,促进均匀的锂沉积并减少副反应.因此,经过RASEI修饰的Li‖Li对称电池可以在1 mA cm^(-2)和1 mAh cm^(-2)下实现超过500小时的长期循环.对循环后锂金属进行测试分析表明锂枝晶的生长得到了有效的抑制.此外,搭配20 mg cm^(-2)高阴极负载的NCM811软包电池在1 C下,经过200次循环后容量保持率超过85%.
文摘Solid-state Li-metal batteries(SSLMBs)have emerged as a highly promising next-generation energy storage solution,offering the potential to fulfill the energy and safety requirements of various applications,including electric vehicles and portable 3C devices.Interfaces,serving as essential components of electrochemistry,play a pivotal role in the performance and reliability of SSLMBs[1].
基金National Key Research and Development Program of China,Grant/Award Number:2023YFB2503801National Natural Science Foundation of China,Grant/Award Numbers:52302253,5202780089+2 种基金Fundamental Research Funds for the Central Universities,Grant/Award Number:HUST:2172020kfyXJJS089Key R&D Program of Hubei Province,Grant/Award Number:2023BAB028Key Program of the National Natural Science Foundation of China,Grant/Award Number:52231009。
文摘Lithium(Li)-metal batteries with polymer electrolytes are promising for high-energy-density and safe energy storage applications.However,current polymer electrolytes suffer either low ionic conductivity or inadequate ability to suppress Li dendrite growth at high current densities.This study addresses both issues by incorporating two-dimensional oxygenated carbon nitride(2D OCN)into a polyvinylidene fluoride(PVDF)-based composite polymer electrolyte and modifying the Li anode with OCN.The OCN nanosheets incorporated PVDF electrolyte exhibits a high ionic conductivity(1.6×10^(-4)S cm^(-1)at 25℃)and Li+transference number(0.62),wide electrochemical window(5.3),and excellent fire resistance.Furthermore,the OCN-modified Li anode in situ generates a protective layer of Li_(3)N during cycling,preventing undesirable reactions with PVDF electrolyte and effectively suppressing Li dendrite growth.Symmetric cells using the upgraded PVDF polymer electrolyte and modified Li anode demonstrate long cycling stability over 2500 h at 0.1 mA cm^(-2).Full cells with a high-voltage LiNi_(0.8)Co_(0.1)Mn_(0.1)O_(2)cathode exhibit high energy density and long-term cycling stability,even at a high loading of 8.2 mg cm^(-2).Incorporating 2D OCN nanosheets into the PVDF-based electrolyte and Li-metal anode provides an effective strategy for achieving safe and high-energy-density Li-metal batteries.
基金supported by the the National Key R&D Program of China(2022YFB3803500)the Natural Science Foundation of Hubei Province(2021CFA066).
文摘Micron-sized silicon(μSi)is a promising anode material for next-generation lithium-ion batteries due to its high specific capacity,low cost,and abundant reserves.However,the volume expansion that occurs during cycling leads to the accumulation of undesirable stresses,resulting in pulverization of silicon microparticles and shortened lifespan of the batteries.Herein,a composite film of Cu-PET-Cu is proposed as the current collector(CC)forμSi anodes to replace the conventional Cu CC.Cu-PET-Cu CC is prepared by depositing Cu on both sides of a polyethylene terephthalate(PET)film.The PET layer promises good ductility of the film,permitting the Cu-PET-Cu CC to accommodate the volumetric changes of silicon microparticles and facilitates the stress release through ductile deformation.As a result,theμSi electrode with Cu-PET-Cu CC retains a high specific capacity of 2181 mA h g^(-1),whereas theμSi electrode with Cu CC(μSi/Cu)exhibits a specific capacity of 1285 mA h g^(-1)after 80 cycles.The stress relieving effect of CuPET-Cu was demonstrated by in-situ fiber optic stress monitoring and multi-physics simulations.This work proposes an effective stress relief strategy at the electrode level for the practical implementation ofμSi anodes.