Pilot two-stage proportional valves are widely used in high-power hydraulic systems. For the purpose of improving the dynamic performance, reliability, and digitization of the traditional proportional valve, a novel t...Pilot two-stage proportional valves are widely used in high-power hydraulic systems. For the purpose of improving the dynamic performance, reliability, and digitization of the traditional proportional valve, a novel two-stage proportional valve with a pilot digital flow distribution is proposed from the viewpoint of the dual nozzle-flapper valve’s working principle. In particular, the dual nozzle-flapper is decoupled by two high-speed on/off valves (HSVs). First, the working principle and mathematical model of the proposed valve are determined. Then, the influences of the control parameters (duty cycle and switching frequency) and structural parameters (fixed orifice’s diameter and main valve’s spring) on the main valve’s motion are analyzed on the basis of theory, simulation, and experiment. In addition, in optimizing the value of the fixed orifice’s diameter, a new design criterion that considers the maximum pressure sensitivity, flow controllability, and flow linearization is proposed to improve the balance between the effective displacement and the displacement fluctuation of the main valve. The new scheme is verified by simulations and experiments. Experimental results of the closed-loop displacement tracking have demonstrated that the delay time of the main valve is always within 3.5 ms under different working conditions, and the tracking error can be significantly reduced using the higher switching frequency. The amplitude–frequency experiments indicate that a −3 dB-frequency of the proposed valve can reach 9.5 Hz in the case of ±50% full scale and 15 Hz in the case of 0%–50% full scale. The values can be further improved by increasing the flow rate of the pilot HSV.展开更多
The Permanent Magnet Torque Motor(PMTM)is the key electro-mechanical conversion device in an Electro-Hydraulic Servo Valve(EHSV).In this work,a refined model of a PMTM is developed,considering the non-working air-gaps...The Permanent Magnet Torque Motor(PMTM)is the key electro-mechanical conversion device in an Electro-Hydraulic Servo Valve(EHSV).In this work,a refined model of a PMTM is developed,considering the non-working air-gaps between the upper or lower yoke and the armature,the fringing effect at the limiting holes,and the nonlinear permeability of soft magnetic material.Based on the refined model,the influences of various factors on the calculation accuracy of the magnetic flux at the pole surfaces of the armature and the output torque are investigated.For verifying the validity of the refined model,a Finite Element Analysis(FEA)of the PMTM is conducted,and a test platform is constructed.Compared with existing models,the refined model can better reveal the intrinsic mechanism of the PMTM,and its calculations are more consistent with the FEA results.The experimental results of the armature deflection displacement show that the refined model can accurately describe the output characteristics of the PMTM.展开更多
基金This work was supported by the National Natural Science Foundation of China(Grant No.51975275)the National Key Laboratory of Science and Technology on Helicopter Transmission(Nanjing University of Aeronautics and Astronautics),China(Grant No.HTL-A-20G02)the Postgraduate Research and Practice Innovation Program of Jiangsu Province,China(Grant No.KYCX200178).
文摘Pilot two-stage proportional valves are widely used in high-power hydraulic systems. For the purpose of improving the dynamic performance, reliability, and digitization of the traditional proportional valve, a novel two-stage proportional valve with a pilot digital flow distribution is proposed from the viewpoint of the dual nozzle-flapper valve’s working principle. In particular, the dual nozzle-flapper is decoupled by two high-speed on/off valves (HSVs). First, the working principle and mathematical model of the proposed valve are determined. Then, the influences of the control parameters (duty cycle and switching frequency) and structural parameters (fixed orifice’s diameter and main valve’s spring) on the main valve’s motion are analyzed on the basis of theory, simulation, and experiment. In addition, in optimizing the value of the fixed orifice’s diameter, a new design criterion that considers the maximum pressure sensitivity, flow controllability, and flow linearization is proposed to improve the balance between the effective displacement and the displacement fluctuation of the main valve. The new scheme is verified by simulations and experiments. Experimental results of the closed-loop displacement tracking have demonstrated that the delay time of the main valve is always within 3.5 ms under different working conditions, and the tracking error can be significantly reduced using the higher switching frequency. The amplitude–frequency experiments indicate that a −3 dB-frequency of the proposed valve can reach 9.5 Hz in the case of ±50% full scale and 15 Hz in the case of 0%–50% full scale. The values can be further improved by increasing the flow rate of the pilot HSV.
基金co-supported by the National Natural Science Foundation of China(No.51975275)Primary Research&Development Plan of Jiangsu Province,China(No.BE2021034)Postgraduate Research&Practice Innovation Program of NUAA,China(No.xcxjh20210502).
文摘The Permanent Magnet Torque Motor(PMTM)is the key electro-mechanical conversion device in an Electro-Hydraulic Servo Valve(EHSV).In this work,a refined model of a PMTM is developed,considering the non-working air-gaps between the upper or lower yoke and the armature,the fringing effect at the limiting holes,and the nonlinear permeability of soft magnetic material.Based on the refined model,the influences of various factors on the calculation accuracy of the magnetic flux at the pole surfaces of the armature and the output torque are investigated.For verifying the validity of the refined model,a Finite Element Analysis(FEA)of the PMTM is conducted,and a test platform is constructed.Compared with existing models,the refined model can better reveal the intrinsic mechanism of the PMTM,and its calculations are more consistent with the FEA results.The experimental results of the armature deflection displacement show that the refined model can accurately describe the output characteristics of the PMTM.