Ammonium level in body fluids serves as one of the critical biomarkers for healthcare,especially those relative to liver diseases.The continuous and real-time monitoring in both invasive and noninvasive manners is hig...Ammonium level in body fluids serves as one of the critical biomarkers for healthcare,especially those relative to liver diseases.The continuous and real-time monitoring in both invasive and noninvasive manners is highly desired,while the ammonium concentrations vary largely in different body fluids.Besides,the sensing reliability based on ion-selective biosensors can be significantly interfered by potassium ions.To tackle these challenges,a flexible and biocompatible sensing patch for wireless ammonium level sensing was reported with an ultrawide linear range for universal body fluids including blood,tears,saliva,sweat and urine.The as-prepared biocompatible sensors deliver a reliable sensitivity of 58.7 mV decade-1 in the range of 1-100 mM and a desirable selectivity coefficient of 0.11 in the interference of potassium ions,attributed to the cross-calibration within the sensors array.The sensor’s biocompatibility was validated by the cell growth on the sensor surface(>80%),hemolysis rates(<5%),negligible cellular inflammatory responses and weight changes of the mice with implanted sensors.Such biocompatible sensors with ultrawide linear range and desirable selectivity open up new possibility of highly compatible biomarker analysis via different body fluids in versatile approaches.展开更多
With the rapid technological innovation in materials engineering and device integration,a wide variety of textilebased wearable biosensors have emerged as promising platforms for personalized healthcare,exercise monit...With the rapid technological innovation in materials engineering and device integration,a wide variety of textilebased wearable biosensors have emerged as promising platforms for personalized healthcare,exercise monitoring,and pre-diagnostics.This paper reviews the recent progress in sweat biosensors and sensing systems integrated into textiles for wearable body status monitoring.The mechanisms of biosensors that are commonly adopted for biomarkers analysis are first introduced.The classification,fabrication methods,and applications of textile conductors in different configurations and dimensions are then summarized.Afterward,innovative strategies to achieve efficient sweat collection with textile-based sensing patches are presented,followed by an in-depth discussion on nanoengineering and system integration approaches for the enhancement of sensing performance.Finally,the challenges of textile-based sweat sensing devices associated with the device reusability,washability,stability,and fabrication reproducibility are discussed from the perspective of their practical applications in wearable healthcare.展开更多
With the growing market of wearable devices for smart sensing and personalized healthcare applications,energy storage devices that ensure stable power supply and can be constructed in flexible platforms have attracted...With the growing market of wearable devices for smart sensing and personalized healthcare applications,energy storage devices that ensure stable power supply and can be constructed in flexible platforms have attracted tremendous research interests.A variety of active materials and fabrication strategies of flexible energy storage devices have been intensively studied in recent years,especially for integrated self-powered systems and biosensing.A series of materials and applications for flexible energy storage devices have been studied in recent years.In this review,the commonly adopted fabrication methods of flexible energy storage devices are introduced.Besides,recent advances in integrating these energy devices into flexible self-powered systems are presented.Furthermore,the applications of flexible energy storage devices for biosensing are summarized.Finally,the prospects and challenges of the self-powered sensing system for wearable electronics are discussed.展开更多
Flexible energy devices are the building blocks for next-generation wearable electronics.Flexible energy devices are expected to have multiple functions,such as energy conversion from light to electricity and vice ver...Flexible energy devices are the building blocks for next-generation wearable electronics.Flexible energy devices are expected to have multiple functions,such as energy conversion from light to electricity and vice versa,energy generation from triboelectric,energy storage and so on.These functions can be efficiently realized by solar cells,light-emitting diodes(LEDs),triboelectric nanogenerators(TENG),batteries and supercapacitors,etc.The flexible energy devices can be integrated into flexible,wearable,and/or portable platforms to enable wide application prospects in the fields of information,energy,medical care,national defense,etc.However,flexible energy devices face more challenges when compared to their rigid counterparts,which requires more breakthroughs and research efforts on fabrication techniques,materials innovation,novel structure designs,and deep physical understandings.展开更多
Since 2020,the global outbreak and continued evolution of the COVID-19 pandemic have brought the concepts of nucleic acid,antigen-antibody,gene sequencing,and other biochemical testing into ordinary families.In this r...Since 2020,the global outbreak and continued evolution of the COVID-19 pandemic have brought the concepts of nucleic acid,antigen-antibody,gene sequencing,and other biochemical testing into ordinary families.In this regard,novel semiconductor-biochemical sensors that convert biochemical information into monitorable electrical and optical signals according to specific rules have become increasingly important and indispensable.These sensors deeply fuse the technical advantages of semiconductors and biochemistry,integrating interdisciplinary subjects such as molecular biology,nanomaterials,microfluidics,artificial intelligence(AI),etc.With the advantages of fast speed,high sensitivity,high integration,easy mass manufacturing,the novel technologies are the"pioneer"of biomedical information acquisition and the"heart"of modern medical diagnostic equipment.Currently,the technologies are showing a spurt of development,with new products emerging,new functions being developed,and new application scenarios being expanded.The research hotspots cover a wide range,including immediate detection,non-invasive analysis,wearable devices,on-site monitoring,etc.This issue looks at the latest advances in the novel technologies for physiological dynamic monitoring of animals/plants and rapid detection of highly pathogenic pathogens,while covering applications in agriculture,fisheries,animal husbandry,biosecurity,and wearable medicine.展开更多
The development of flexible photodetectors has received great attention for future optoelectronic applications including flexible image sensors, biomedical imaging, and smart, wearable systems. Previously omnidirectio...The development of flexible photodetectors has received great attention for future optoelectronic applications including flexible image sensors, biomedical imaging, and smart, wearable systems. Previously omnidirectional photodetectors were only achievable by integration of a hemispherical microlens assembly on multiple photodetectors. Herein, a hierarchical photodiode design of ZnO nanowires (NWs) on honeycomb-structured Si (H-Si) membranes is demonstrated to exhibit excellent omnidirectional light-absorption ability and thus maintain high photocurrents over broad spectral ranges (365 to 1,100 nm) for wide incident angles (0° to 70°), which enabled broadband omnidirectional light detection in flexible photodetectors. Furthermore, the stress-relieving honeycomb pattern within the photodiode micromembranes provided photodetectors with excellent mechanical flexibility (10% decrease in photocurrent at a bending radius of 3 mm) and durability (minimal change in photocurrent over 10,000 bending cycles). When employed in semiconductor thin films, the hierarchical NW/honeycomb heterostructure design acts as an efficient platform for various optoelectronic devices requiring mechanical flexibility and broadband omnidirectional light detection.展开更多
In recent years, tremendous research interest has been triggered in the fields of flexible, wearable and miniaturized power supply devices and self-powered energy sources, in which energy harvesting/conversion devices...In recent years, tremendous research interest has been triggered in the fields of flexible, wearable and miniaturized power supply devices and self-powered energy sources, in which energy harvesting/conversion devices are integrated with energy storage devices into an infinitely self-powered energy system. As opposed to conventional fabrication methods, printing techniques hold promising potency for fabrication of power supply devices with practical scalability and versatility, especially for applications in wearable and portable electronics. To further enhance the performance of the as-fabricated devices, the utilization of nanomaterials is one of the promising strategies, owing to their unique properties. In this review, an overview on the progress of printable strategies to revolutionize the fabrication of power supply devices and integrated system with attractive form factors is provided. The advantages and limitations of the commonly adopted printing techniques for power supply device fabrication are first summarized. Thereafter, the research progress on novel developed printable energy harvesting and conversion devices, including solar cells, nanogenerators and biofuel cells, and the research advances on printable energy storage devices, namely, supercapacitors and rechargeable batteries, are presented, respectively. Although exciting advances on printable material modification, innovative fabrication methods and device performance improvement have been witnessed, there are still several challenges to be addressed to realize fully printable fabrication of integrated self-powered energy sources.展开更多
基金supported by the National Natural Science Foundation of China(62201243)Natural Science Foundation of Guangdong Province(2022A1515011928)+2 种基金Shenzhen Science and Technology Program(Grant No.RCYX20231211090432060,JSGGZD20220822095600001)Postgraduate Scientific Research Innovation Project of Hunan Province(CX20231306)the technical support from the Southern University of Science and Technology Core Research Facilities(SUSTech CRF)。
文摘Ammonium level in body fluids serves as one of the critical biomarkers for healthcare,especially those relative to liver diseases.The continuous and real-time monitoring in both invasive and noninvasive manners is highly desired,while the ammonium concentrations vary largely in different body fluids.Besides,the sensing reliability based on ion-selective biosensors can be significantly interfered by potassium ions.To tackle these challenges,a flexible and biocompatible sensing patch for wireless ammonium level sensing was reported with an ultrawide linear range for universal body fluids including blood,tears,saliva,sweat and urine.The as-prepared biocompatible sensors deliver a reliable sensitivity of 58.7 mV decade-1 in the range of 1-100 mM and a desirable selectivity coefficient of 0.11 in the interference of potassium ions,attributed to the cross-calibration within the sensors array.The sensor’s biocompatibility was validated by the cell growth on the sensor surface(>80%),hemolysis rates(<5%),negligible cellular inflammatory responses and weight changes of the mice with implanted sensors.Such biocompatible sensors with ultrawide linear range and desirable selectivity open up new possibility of highly compatible biomarker analysis via different body fluids in versatile approaches.
基金supported by the National Natural Science Foundation of China(62201243)Fundamental and Applied Research Grant of Guangdong Province(2021A1515110627)+3 种基金Southern University of Science and Technology(Y01796108,Y01796208)RGC Senior Research Fellow Scheme of Hong Kong(SRFS2122-5S04)the Hong Kong Polytechnic University(1-ZVQM),RI-Wear of PolyU(1-CD44)Shenzhen Science and Technology Innovation Committee(SGDX20210823103403033).
文摘With the rapid technological innovation in materials engineering and device integration,a wide variety of textilebased wearable biosensors have emerged as promising platforms for personalized healthcare,exercise monitoring,and pre-diagnostics.This paper reviews the recent progress in sweat biosensors and sensing systems integrated into textiles for wearable body status monitoring.The mechanisms of biosensors that are commonly adopted for biomarkers analysis are first introduced.The classification,fabrication methods,and applications of textile conductors in different configurations and dimensions are then summarized.Afterward,innovative strategies to achieve efficient sweat collection with textile-based sensing patches are presented,followed by an in-depth discussion on nanoengineering and system integration approaches for the enhancement of sensing performance.Finally,the challenges of textile-based sweat sensing devices associated with the device reusability,washability,stability,and fabrication reproducibility are discussed from the perspective of their practical applications in wearable healthcare.
基金the Engineering Research Center of Integrated Circuits for Next-Generation Communications Grant(Y01796303)Southern University of Science and Technology Grant(Y01796108,Y01796208).
文摘With the growing market of wearable devices for smart sensing and personalized healthcare applications,energy storage devices that ensure stable power supply and can be constructed in flexible platforms have attracted tremendous research interests.A variety of active materials and fabrication strategies of flexible energy storage devices have been intensively studied in recent years,especially for integrated self-powered systems and biosensing.A series of materials and applications for flexible energy storage devices have been studied in recent years.In this review,the commonly adopted fabrication methods of flexible energy storage devices are introduced.Besides,recent advances in integrating these energy devices into flexible self-powered systems are presented.Furthermore,the applications of flexible energy storage devices for biosensing are summarized.Finally,the prospects and challenges of the self-powered sensing system for wearable electronics are discussed.
文摘Flexible energy devices are the building blocks for next-generation wearable electronics.Flexible energy devices are expected to have multiple functions,such as energy conversion from light to electricity and vice versa,energy generation from triboelectric,energy storage and so on.These functions can be efficiently realized by solar cells,light-emitting diodes(LEDs),triboelectric nanogenerators(TENG),batteries and supercapacitors,etc.The flexible energy devices can be integrated into flexible,wearable,and/or portable platforms to enable wide application prospects in the fields of information,energy,medical care,national defense,etc.However,flexible energy devices face more challenges when compared to their rigid counterparts,which requires more breakthroughs and research efforts on fabrication techniques,materials innovation,novel structure designs,and deep physical understandings.
文摘Since 2020,the global outbreak and continued evolution of the COVID-19 pandemic have brought the concepts of nucleic acid,antigen-antibody,gene sequencing,and other biochemical testing into ordinary families.In this regard,novel semiconductor-biochemical sensors that convert biochemical information into monitorable electrical and optical signals according to specific rules have become increasingly important and indispensable.These sensors deeply fuse the technical advantages of semiconductors and biochemistry,integrating interdisciplinary subjects such as molecular biology,nanomaterials,microfluidics,artificial intelligence(AI),etc.With the advantages of fast speed,high sensitivity,high integration,easy mass manufacturing,the novel technologies are the"pioneer"of biomedical information acquisition and the"heart"of modern medical diagnostic equipment.Currently,the technologies are showing a spurt of development,with new products emerging,new functions being developed,and new application scenarios being expanded.The research hotspots cover a wide range,including immediate detection,non-invasive analysis,wearable devices,on-site monitoring,etc.This issue looks at the latest advances in the novel technologies for physiological dynamic monitoring of animals/plants and rapid detection of highly pathogenic pathogens,while covering applications in agriculture,fisheries,animal husbandry,biosecurity,and wearable medicine.
文摘The development of flexible photodetectors has received great attention for future optoelectronic applications including flexible image sensors, biomedical imaging, and smart, wearable systems. Previously omnidirectional photodetectors were only achievable by integration of a hemispherical microlens assembly on multiple photodetectors. Herein, a hierarchical photodiode design of ZnO nanowires (NWs) on honeycomb-structured Si (H-Si) membranes is demonstrated to exhibit excellent omnidirectional light-absorption ability and thus maintain high photocurrents over broad spectral ranges (365 to 1,100 nm) for wide incident angles (0° to 70°), which enabled broadband omnidirectional light detection in flexible photodetectors. Furthermore, the stress-relieving honeycomb pattern within the photodiode micromembranes provided photodetectors with excellent mechanical flexibility (10% decrease in photocurrent at a bending radius of 3 mm) and durability (minimal change in photocurrent over 10,000 bending cycles). When employed in semiconductor thin films, the hierarchical NW/honeycomb heterostructure design acts as an efficient platform for various optoelectronic devices requiring mechanical flexibility and broadband omnidirectional light detection.
文摘In recent years, tremendous research interest has been triggered in the fields of flexible, wearable and miniaturized power supply devices and self-powered energy sources, in which energy harvesting/conversion devices are integrated with energy storage devices into an infinitely self-powered energy system. As opposed to conventional fabrication methods, printing techniques hold promising potency for fabrication of power supply devices with practical scalability and versatility, especially for applications in wearable and portable electronics. To further enhance the performance of the as-fabricated devices, the utilization of nanomaterials is one of the promising strategies, owing to their unique properties. In this review, an overview on the progress of printable strategies to revolutionize the fabrication of power supply devices and integrated system with attractive form factors is provided. The advantages and limitations of the commonly adopted printing techniques for power supply device fabrication are first summarized. Thereafter, the research progress on novel developed printable energy harvesting and conversion devices, including solar cells, nanogenerators and biofuel cells, and the research advances on printable energy storage devices, namely, supercapacitors and rechargeable batteries, are presented, respectively. Although exciting advances on printable material modification, innovative fabrication methods and device performance improvement have been witnessed, there are still several challenges to be addressed to realize fully printable fabrication of integrated self-powered energy sources.