Subarachnoid hemorrhage(SAH)is a dominant cause of death and disability wo rldwide.A sharp increase in intracranial pressure after SAH leads to a reduction in cerebral perfusion and insufficient blood supply for neuro...Subarachnoid hemorrhage(SAH)is a dominant cause of death and disability wo rldwide.A sharp increase in intracranial pressure after SAH leads to a reduction in cerebral perfusion and insufficient blood supply for neuro ns,which subsequently promotes a series of pathophysiological responses leading to neuronal death.Many previous experimental studies have reported that excitotoxicity,mitochondrial death pathways,the release of free radicals,protein misfolding,apoptosis,nec rosis,autophagy,and inflammation are involved solely or in combination in this disorder.Among them,irreversible neuronal apoptosis plays a key role in both short-and long-term prognoses after SAH.Neuronal apoptosis occurs through multiple pathways including extrinsic,mitochondrial,endoplasmic reticulum,p53 and oxidative stress.Meanwhile,a large number of blood contents enter the subarachnoid space after SAH,and the secondary metabolites,including oxygenated hemoglo bin and heme,further aggravate the destruction of the blood-brain barrier and vasogenic and cytotoxic brain edema,causing early brain injury and delayed cerebral ischemia,and ultimately increasing neuronal apoptosis.Even there is no clear and effective therapeutic strategy for SAH thus far,but by understanding apoptosis,we might excavate new ideas and approaches,as targeting the upstream and downstream molecules of apoptosis-related pathways shows promise in the treatment of SAH.In this review,we summarize the existing evidence on molecules and related drugs or molecules involved in the apoptotic pathway after SAH,which provides a possible target or new strategy for the treatment of SAH.展开更多
Deamination is a crucial step in the transformation of 6-cyclopropylamino guanosine prodrug to its active form. A convenient method using capillary electrophoresis (CE) without sample labeling was developed to analy...Deamination is a crucial step in the transformation of 6-cyclopropylamino guanosine prodrug to its active form. A convenient method using capillary electrophoresis (CE) without sample labeling was developed to analyze the deamination of a series of D-/L-6-cyclopropylamino guanosine analogs by mouse liver homogenate, mouse liver microsome, and adenosine deaminase (ADA). A two-step process involving a 6-amino guanosine intermediate formed by oxidative N-dealkylation was demonstrated in the metabolism of 6-cyclopropylamino guanosine to 6-hydroxy guanosine. The results indicated that the transformation rates of different prodrugs to the active form varied greatly, which were closely correlated with the configuration of nucleosides and the structure of glycosyl groups. Most importantly, D-form analogs were metabolized much faster than their L-counterparts, thus clearly pointed out that compared to guanine, modification of glycosyl part might be a better choice for the development of L-Kuanosine analogs for the treatment of HIV,展开更多
基金supported by the National Natural Science Foundation of China,Nos.81971870,82172173(both to MCL)。
文摘Subarachnoid hemorrhage(SAH)is a dominant cause of death and disability wo rldwide.A sharp increase in intracranial pressure after SAH leads to a reduction in cerebral perfusion and insufficient blood supply for neuro ns,which subsequently promotes a series of pathophysiological responses leading to neuronal death.Many previous experimental studies have reported that excitotoxicity,mitochondrial death pathways,the release of free radicals,protein misfolding,apoptosis,nec rosis,autophagy,and inflammation are involved solely or in combination in this disorder.Among them,irreversible neuronal apoptosis plays a key role in both short-and long-term prognoses after SAH.Neuronal apoptosis occurs through multiple pathways including extrinsic,mitochondrial,endoplasmic reticulum,p53 and oxidative stress.Meanwhile,a large number of blood contents enter the subarachnoid space after SAH,and the secondary metabolites,including oxygenated hemoglo bin and heme,further aggravate the destruction of the blood-brain barrier and vasogenic and cytotoxic brain edema,causing early brain injury and delayed cerebral ischemia,and ultimately increasing neuronal apoptosis.Even there is no clear and effective therapeutic strategy for SAH thus far,but by understanding apoptosis,we might excavate new ideas and approaches,as targeting the upstream and downstream molecules of apoptosis-related pathways shows promise in the treatment of SAH.In this review,we summarize the existing evidence on molecules and related drugs or molecules involved in the apoptotic pathway after SAH,which provides a possible target or new strategy for the treatment of SAH.
基金supported by National Natural Science Foundation of China (NSFC) (Nos.21172010,21002004)
文摘Deamination is a crucial step in the transformation of 6-cyclopropylamino guanosine prodrug to its active form. A convenient method using capillary electrophoresis (CE) without sample labeling was developed to analyze the deamination of a series of D-/L-6-cyclopropylamino guanosine analogs by mouse liver homogenate, mouse liver microsome, and adenosine deaminase (ADA). A two-step process involving a 6-amino guanosine intermediate formed by oxidative N-dealkylation was demonstrated in the metabolism of 6-cyclopropylamino guanosine to 6-hydroxy guanosine. The results indicated that the transformation rates of different prodrugs to the active form varied greatly, which were closely correlated with the configuration of nucleosides and the structure of glycosyl groups. Most importantly, D-form analogs were metabolized much faster than their L-counterparts, thus clearly pointed out that compared to guanine, modification of glycosyl part might be a better choice for the development of L-Kuanosine analogs for the treatment of HIV,