There are abundant igneous gas reservoirs in the South China Sea with significant value of research,and lithology classification,mineral analysis and porosity inversion are important links in reservoir evaluation.Howe...There are abundant igneous gas reservoirs in the South China Sea with significant value of research,and lithology classification,mineral analysis and porosity inversion are important links in reservoir evaluation.However,affected by the diverse lithology,complicated mineral and widespread alteration,conventional logging lithology classification and mineral inversion become considerably difficult.At the same time,owing to the limitation of the wireline log response equation,the quantity and accuracy of minerals can hardly meet the exploration requirements of igneous formations.To overcome those issues,this study takes the South China Sea as an example,and combines multi-scale data such as micro rock slices,petrophysical experiments,wireline log and element cutting log to establish a set of joint inversion methods for minerals and porosity of altered igneous rocks.Specifically,we define the lithology and mineral characteristics through core slices and mineral data,and establish an igneous multi-mineral volumetric model.Then we determine element cutting log correction method based on core element data,and combine wireline log and corrected element cutting log to perform the lithology classification and joint inversion of minerals and porosity.However,it is always difficult to determine the elemental eigenvalues of different minerals in inversion.This paper uses multiple linear regression methods to solve this problem.Finally,an integrated inversion technique for altered igneous formations was developed.The results show that the corrected element cutting log are in good agreement with the core element data,and the mineral and porosity results obtained from the joint inversion based on the wireline log and corrected element cutting log are also in good agreement with the core data from X-ray diffraction.The results demonstrate that the inversion technique is applicable and this study provides a new direction for the mineral inversion research of altered igneous formations.展开更多
Fractures in oil and gas reservoirs have been the topic of many studies and have attracted reservoir research all over the world. Because of the complexities of the fractures, it is difficult to use fractured reservoi...Fractures in oil and gas reservoirs have been the topic of many studies and have attracted reservoir research all over the world. Because of the complexities of the fractures, it is difficult to use fractured reservoir core samples to investigate true underground conditions. Due to the diversity of the fracture parameters, the simulation and evaluation of fractured rock in the laboratory setting is also difficult. Previous researchers have typically used a single material, such as resin, to simulate fractures. There has been a great deal of simplifying of the materials and conditions, which has led to disappointing results in application. In the present study, sandstone core samples were selected and sectioned to simulate fractures, and the changes of the compressional and shear waves were measured with the gradual increasing of the fracture width. The effects of the simulated fracture width on the acoustic wave velocity and amplitude were analyzed. Two variables were defined: H represents the amplitude attenuation ratio of the compressional and shear wave, and x represents the transit time difference value of the shear wave and compressional wave divided by the transit time of the compressional wave. The effect of fracture width on these two physical quantities was then analyzed. Finally, the methods of quantitative evaluation for fracture width with H and x were obtained. The experimental results showed that the rock fractures linearly reduced the velocity of the shear and compressional waves. The effect of twin fractures on thecompressional velocity was almost equal to that of a single fracture which had the same fracture width as the sum of the twin fractures. At the same time, the existence of fractures led to acoustic wave amplitude attenuations, and the compressional wave attenuation was two times greater than that of the shear wave. In this paper, a method was proposed to calculate the fracture width with x and H, then this was applied to the array acoustic imaging logging data.The application examples showed that the calculated fracture width could be compared with fractures on the electric imaging logs. These rules were applied in the well logs to effectively evaluate the fractures, under the case of no image logs, which had significance to prospecting and development of oil and gas in fractured reservoirs.展开更多
The solidification methods of electromagnetic stirring(EMS)and non-electromagnetic stirring were employed to prepare Mg–6Gd–3Y–xZn–0.6Zr(x=1,1.5,2,3)alloys.The evolution of alloy microstructures and the changes in...The solidification methods of electromagnetic stirring(EMS)and non-electromagnetic stirring were employed to prepare Mg–6Gd–3Y–xZn–0.6Zr(x=1,1.5,2,3)alloys.The evolution of alloy microstructures and the changes in properties were analyzed for different Zn contents.It has been observed that in alloys without electromagnetic stirring,as the Zn content increases,the alloy structure gradually refines.The primary second phase transitions from Mg5RE phase to long-period stacking ordered(LPSO)phase,resulting in improved hardness and elongation.In alloys subjected to electromagnetic stirring,there is a relatively higher content of the second phase,primarily consisting of LPSO phase.After applying electromagnetic stirring,the quantity and the type of LPSO phase in the alloy change.The alloy structure becomes more uniform with electromagnetic stirring,resulting in increased hardness and reduced hardness gradients within the grains.The mechanical properties of alloys with electromagnetic stirring are superior to those without electromagnetic stirring.展开更多
The Mg-1Gd-0.75Er-0.5Zn-0.18Zr(at.%)alloy with long-period stacking ordered(LPSO)phase was prepared by metal mold casting and hot extrusion.The extruded samples had a typical bimodal microstructure.The different fract...The Mg-1Gd-0.75Er-0.5Zn-0.18Zr(at.%)alloy with long-period stacking ordered(LPSO)phase was prepared by metal mold casting and hot extrusion.The extruded samples had a typical bimodal microstructure.The different fractions of equiaxed grains were observed in annealed samples.The percentage of fine grains decreased in the extruded Mg alloys with and without annealing treatment when the extrusion temperature was increased.The LPSO phases promote recrystal-lization behavior in the samples through particle-stimulated nucleation(PSN)mechanism.The Mg alloys extruded at 300℃ with or without annealing treatment obtained the best tensile properties.At the low extrusion temperature,more finely equiaxed grains with random texture are formed through PSN,and more LPSO phase kink bands are formed,which could improve the mechanical properties of the extruded Mg alloys.展开更多
The string-to-tree model is one of the most successful syntax-based statistical machine translation(SMT) models. It models the grammaticality of the output via target-side syntax. However, it does not use any semantic...The string-to-tree model is one of the most successful syntax-based statistical machine translation(SMT) models. It models the grammaticality of the output via target-side syntax. However, it does not use any semantic information and tends to produce translations containing semantic role confusions and error chunk sequences. In this paper, we propose two methods to use semantic roles to improve the performance of the string-to-tree translation model:(1) adding role labels in the syntax tree;(2) constructing a semantic role tree, and then incorporating the syntax information into it. We then perform string-to-tree machine translation using the newly generated trees. Our methods enable the system to train and choose better translation rules using semantic information. Our experiments showed significant improvements over the state-of-the-art string-to-tree translation system on both spoken and news corpora, and the two proposed methods surpass the phrase-based system on large-scale training data.展开更多
基金supported by the Jiangsu Province Industry–University–Research Project,China(No.BY20221160)the Postgraduate Research and Practice Innovation Program of Jiangsu Province,China(No.KYCX22_3798)+2 种基金the National Natural Science Foundation of China(No.52275339)the Key Research and Development Plan of the Ministry of Science and Technology,China(No.2023YFE0200400)the Science and Technology Project of Jiangsu Province,China(No.BZ2021053)。
基金The project was supported by the National Natural Science Foundation of China(Grant No.42204122).
文摘There are abundant igneous gas reservoirs in the South China Sea with significant value of research,and lithology classification,mineral analysis and porosity inversion are important links in reservoir evaluation.However,affected by the diverse lithology,complicated mineral and widespread alteration,conventional logging lithology classification and mineral inversion become considerably difficult.At the same time,owing to the limitation of the wireline log response equation,the quantity and accuracy of minerals can hardly meet the exploration requirements of igneous formations.To overcome those issues,this study takes the South China Sea as an example,and combines multi-scale data such as micro rock slices,petrophysical experiments,wireline log and element cutting log to establish a set of joint inversion methods for minerals and porosity of altered igneous rocks.Specifically,we define the lithology and mineral characteristics through core slices and mineral data,and establish an igneous multi-mineral volumetric model.Then we determine element cutting log correction method based on core element data,and combine wireline log and corrected element cutting log to perform the lithology classification and joint inversion of minerals and porosity.However,it is always difficult to determine the elemental eigenvalues of different minerals in inversion.This paper uses multiple linear regression methods to solve this problem.Finally,an integrated inversion technique for altered igneous formations was developed.The results show that the corrected element cutting log are in good agreement with the core element data,and the mineral and porosity results obtained from the joint inversion based on the wireline log and corrected element cutting log are also in good agreement with the core data from X-ray diffraction.The results demonstrate that the inversion technique is applicable and this study provides a new direction for the mineral inversion research of altered igneous formations.
基金supported in part by the National Natural Science Foundation of China (Grant No. 41174096)the Graduate Innovation Fund of Jilin University (Project No. 2016103)
文摘Fractures in oil and gas reservoirs have been the topic of many studies and have attracted reservoir research all over the world. Because of the complexities of the fractures, it is difficult to use fractured reservoir core samples to investigate true underground conditions. Due to the diversity of the fracture parameters, the simulation and evaluation of fractured rock in the laboratory setting is also difficult. Previous researchers have typically used a single material, such as resin, to simulate fractures. There has been a great deal of simplifying of the materials and conditions, which has led to disappointing results in application. In the present study, sandstone core samples were selected and sectioned to simulate fractures, and the changes of the compressional and shear waves were measured with the gradual increasing of the fracture width. The effects of the simulated fracture width on the acoustic wave velocity and amplitude were analyzed. Two variables were defined: H represents the amplitude attenuation ratio of the compressional and shear wave, and x represents the transit time difference value of the shear wave and compressional wave divided by the transit time of the compressional wave. The effect of fracture width on these two physical quantities was then analyzed. Finally, the methods of quantitative evaluation for fracture width with H and x were obtained. The experimental results showed that the rock fractures linearly reduced the velocity of the shear and compressional waves. The effect of twin fractures on thecompressional velocity was almost equal to that of a single fracture which had the same fracture width as the sum of the twin fractures. At the same time, the existence of fractures led to acoustic wave amplitude attenuations, and the compressional wave attenuation was two times greater than that of the shear wave. In this paper, a method was proposed to calculate the fracture width with x and H, then this was applied to the array acoustic imaging logging data.The application examples showed that the calculated fracture width could be compared with fractures on the electric imaging logs. These rules were applied in the well logs to effectively evaluate the fractures, under the case of no image logs, which had significance to prospecting and development of oil and gas in fractured reservoirs.
基金supported by Postgraduate Research&Practice Innovation Program of Jiangsu Province(Project No.KYCX22_3792)Basic Science(Natural Science)Research General Project of Jiangsu Province Universities,China(22KJB430003).
文摘The solidification methods of electromagnetic stirring(EMS)and non-electromagnetic stirring were employed to prepare Mg–6Gd–3Y–xZn–0.6Zr(x=1,1.5,2,3)alloys.The evolution of alloy microstructures and the changes in properties were analyzed for different Zn contents.It has been observed that in alloys without electromagnetic stirring,as the Zn content increases,the alloy structure gradually refines.The primary second phase transitions from Mg5RE phase to long-period stacking ordered(LPSO)phase,resulting in improved hardness and elongation.In alloys subjected to electromagnetic stirring,there is a relatively higher content of the second phase,primarily consisting of LPSO phase.After applying electromagnetic stirring,the quantity and the type of LPSO phase in the alloy change.The alloy structure becomes more uniform with electromagnetic stirring,resulting in increased hardness and reduced hardness gradients within the grains.The mechanical properties of alloys with electromagnetic stirring are superior to those without electromagnetic stirring.
基金support from Postgraduate Research&Practice Innovation Program of Jiangsu Province(No.SJCX21_1764)Department Education of Jiangsu Province(No.22KJB430003)Guangdong Basic and Applied Basic Research Foundation(No.2020A1515110394).
文摘The Mg-1Gd-0.75Er-0.5Zn-0.18Zr(at.%)alloy with long-period stacking ordered(LPSO)phase was prepared by metal mold casting and hot extrusion.The extruded samples had a typical bimodal microstructure.The different fractions of equiaxed grains were observed in annealed samples.The percentage of fine grains decreased in the extruded Mg alloys with and without annealing treatment when the extrusion temperature was increased.The LPSO phases promote recrystal-lization behavior in the samples through particle-stimulated nucleation(PSN)mechanism.The Mg alloys extruded at 300℃ with or without annealing treatment obtained the best tensile properties.At the low extrusion temperature,more finely equiaxed grains with random texture are formed through PSN,and more LPSO phase kink bands are formed,which could improve the mechanical properties of the extruded Mg alloys.
基金supported by the National Natural Science Foundation of China(Nos.61132009,61201352,61502035,and 61201351)the National Basic Research Program(973)of China(No.2013CB329303)the Beijing Advanced Innovation Center for Imaging Technology(No.BAICIT-2016007)
文摘The string-to-tree model is one of the most successful syntax-based statistical machine translation(SMT) models. It models the grammaticality of the output via target-side syntax. However, it does not use any semantic information and tends to produce translations containing semantic role confusions and error chunk sequences. In this paper, we propose two methods to use semantic roles to improve the performance of the string-to-tree translation model:(1) adding role labels in the syntax tree;(2) constructing a semantic role tree, and then incorporating the syntax information into it. We then perform string-to-tree machine translation using the newly generated trees. Our methods enable the system to train and choose better translation rules using semantic information. Our experiments showed significant improvements over the state-of-the-art string-to-tree translation system on both spoken and news corpora, and the two proposed methods surpass the phrase-based system on large-scale training data.